《几何画板》在小学数学中的应用初探
摘要: 利用好《几何画板》,就好比多了一个“数学实验室”,通过数学实验培养学生的观察能力、实验操作、分析能力以及创新能力。利用好《几何画板》,让数学图形“动”起来;利用好《几何画板》,让应用题“活”起来;利用好《几何画板》,让抽象的数学概念“可视化”;利用好《几何画板》,使数学规律更加直观化,简单化,具体化。
关键词: 小学数学;几何画板;数学实验室;几何图形。
《几何画板》体现的是一种动态几何,它的运用能够激发学生学习兴趣,培养学生的合作探究精神和能力, 训练学生发散思维能力,为学生提供自主学习和参与实践的平台,有助于发展学生创造性思维能力。
利用好《几何画板》,可以制作图形和图象的结合的动画,让学生观察图形、图象的变化过程,找出联系,发现规律。通过几何画板的“数”与“形”的相互转化,使规律更加直观化、简单化、具体化。利用好《几何画板》,讲解抽象概念、验证定理、揭示动态规律有着特殊的优越性,不仅调动了学生的积极性,激发了浓厚的学习兴趣,而且实现了直觉思维与逻辑思维的有机结合,实现了对概念、定理、规律等知识的创造性理解。利用好《几何画板》,为学生创造了一个便于探索、及时反馈的环境。学生通过反馈的结果及时调整自己想法,逐步归纳出自己的猜想,完善自己的探究过程。同时也可以创建富有启发性的问题情景,通过数学实验培养学生的观察能力、实验操作、探究能力[1]。
那么,《几何画板》在小学数学中能不能发挥它的独特魅力和作用呢? 它能发挥那些作用?经过我的长时间的研究和实践,答案是肯定的。下面,我试着从以下三个方面来谈谈它的作用和价值所在。
一、利用《几何画板》构建“数学实验室”
利用好《几何画板》,就好比多了一个“数学实验室”,通过数学实验培养学生的观察能力、实验操作、分析能力以及创新能力。能更好的调动学生的想象力,激发其创新能力。利用它做出的课件,创设情境,诱发学生的求知欲,激发学生的数学学习兴趣。
例1:人教版小学数学四年级下册第85页《三角形的内角和》这一课,老生常谈,许多名师为此做过研讨,开过课。然而上完课后大多老师都有类似的感受:1.三角形内角和是180°,这个结论大多数学生都预先知道,他们往往没有探究的欲望;2.即便学生配合老师,硬着头皮探究,其探究也只是浮于表面,探究方法仅仅局限于少数同学告知的“测量求和”。至于“折”、“拼”等方法也只是先看了书的几位学生表演,对更多的学生而言仅仅是由老师“告知”变为学生“教给”而已;3.无论哪种方法,客观存在、不可避免的误差,总使得“三角形内角和是180°”这个结论“腰杆不硬”,不足以让人信服。
这时,利用《几何画板》,可以比较好的解决这些问题,做好“撕、拼、折”的数学试验。
其实,学生只是知道了三角形三个内角的和是180°这个信息而已。对三角形的内角和为什么是180度等问题进行深入的思考和研究,这应是老师要重点引导学生探究解决的问题。探究兴趣有了,自然而然的引导学生用《几何画板》来实验一下这个结论。
帕斯卡,有人认识吗?他可是一位很了不起的科学家。300多年前,法国人帕斯卡才12岁那年,发现了一个“改变他一生”的数学问题。“三角形内角和是180度。”在没有人提出“三角形内角和是180度”这个结论之前,12岁的帕斯卡怎么会想到这个问题的呢? 他将矩形沿对角线剪开,发现“任意矩形都能分成两个完全相同的直角三角形”,他想“如果改变矩形长和宽不就可以得到任意直角三角形吗?”因为矩形的四个角都是直角,所以矩形的内角和等于360°。又因为“分成的直角三角形的内角和正好是矩形内角和的一半”,所以“直角三角形内角和为180°”。见图3。
接着帕斯卡又发现“任何三角形都可以分成两个直角三角形”,这两个直角三角形去掉两个直角,剩下的就得到原三角形的内角和为180°(见图4)。
我们必须知道,数学图例确实来自于实际生活,但是,数学图例又跟生活中的图例有一个本质的不同。那就是数学图例是一种理想化的数学概念,而生活中的任何图例都不是完美无缺的。所以,正因为数学图例的理想化,抽象化,所以它才能用来做精确的计算和演示,要想把它“活”起来,“动”起来。《几何画板》是一个很好的“数学实验室”。只有通过它,才可以把数学概念“可视化”[2]。
二、利用《几何画板》使抽象的数学知识形象化 |