|
新人教版六年级上册数学第五单元《整理和复习》教案板书设计
第6节 整理和复习
教学内容:教材第77页整理和复习。
教学目标:
1、根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。
2、培养学生、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
3、培养学生认真审的良好学习习惯。
教学重难点:灵活运用圆的周长或面积公式解决实际问题,求组合图形的面积。
教具学具准备: 一根长绳、面积单位。
教学设计:
⊙激趣导入
同学们,图形世界是美丽的、奇妙的,世界因为有了五彩的图案而更加美丽。谁来说一说你知道哪些美丽的图案?它们是由哪些基本图形组成的?
出示教材69页主题图,引导学生观察,然后提问:
你知道生活中还有哪些外方内圆和外圆内方的物体吗?外方内圆的图形我们称它为圆外切正方形,外圆内方的图形我们称它为圆内接正方形。今天,我们一起来探究怎样求这两种图形的面积。(板书课题——解决问题)
设计意图:根据学生已有的知识经验和生活经验,让学生说一说生活中与圆有关的组合图形的图片,学生热情高涨,兴趣盎然,有主动学习的欲望。
⊙实践探究,发现规律
1.探究圆外切正方形与圆之间部分的面积。
(1)动手操作,发现半径与边长的关系。
①用直尺画一个边长为10 cm的正方形,说说你是怎样画的。
②在正方形内画一个最大的圆。你能说出你是怎样确定这个圆的圆心和半径的吗?
(要收集学生不同的操作方法,让学生判断哪一种方法是正确的,评选最优方法,并指出做错的同学错在哪里)
③学生到实物投影中展示自己的作品,并回答半径是多少及半径与正方形边长的关系。
(板书:d=a r= )
(2)填表。
计算正方形与它内接圆的面积并完成下表。
正方形的边长/m 1 2 3 4 5 r
正方形的面积/m2
圆的面积/m2
圆与正方形之间部分的面积/m2
(组织学生以小组为单位计算并填表)
(3)观察、发现规律。
观察表中的数据,你有什么发现?(小组内讨论)
以半径为1 m的圆的外切正方形为例:
2×2=4(m2)
3.14×12=3.14(m2)
4-3.14=0.86(m2)
所以半径为r的圆外切正方形与圆之间部分的面积是(2r)2-3.14r2=0.86r2。
师追问:是不是任意一个正方形内接一个圆,它们之间部分的面积都是0.86r2呢?
学生汇报后小结:
(1)边长逐渐增大,正方形的面积逐渐增大,圆的面积越大。
(2)任意一个正方形内接圆,它们之间部分的面积都是0.86r2。
2.探究圆内接正方形中圆与正方形之间部分的面积。
师:既然一个圆外切一个正方形有这样的面积关系,那么反过来,在一个圆内画一个最大的正方形,它们之间的面积又是多少呢?
(1)探究圆内接正方形的对角线与直径之间的关系。
①操作。
(教师课件出示一个圆)试一试在圆内画一个最大的正方形,并说一说应该怎样画。
学生尝试后汇报:在圆内画两条互相垂直的直径,然后把两条直径与圆上的四个交点连接,就画出一个正方形了。(课件演示作图的方法,并集体订正)
②想一想,正方形与圆有什么联系?
(正方形的对角线等于圆的直径)
(2)讨论圆内接正方形与圆之间部分的面积。
(3)探究计算方法,发现规律。
①讨论:怎样求出正方形和圆之间部分的面积。
(学生以小组为单位讨论)
②尝试计算,汇报交流。
如果圆的半径是1 m,你可以怎样求出正方形和圆之间的面积?
学生以小组为单位计算后汇报,并说明理由。
方法一 2×1÷2×2=2(m2) 3.14×12=3.14(m2)
3.14-2=1.14(m2)
方法二 1×1÷2×4=2(m2) 3.14×12=3.14(m2)
3.14-2=1.14(m2)
方法三 2×2÷2=2(m2) 3.14×12=3.14(m2)
3.14-2=1.14(m2)
③发现规律。
组织学生以小组为单位,改变圆的半径尝试计算后汇报发现了什么。
根据学生的汇报小结:
半径为r的圆内接正方形中圆与正方形之间的面积的关系是: =1.14r2
设计意图:这一题的关键是根据圆的半径求圆的内接正方形的面积。教学设计留给学生大部分时间让学生进行讨论、交流求正方形面积的方法,并汇报交流,拓展了学生的能力,提高学生的发散思维能力。
⊙拓展应用
想一想,同一个圆,它们的外切正方形与内接正方形的面积之间有什么关系呢?
学生独立思考,然后汇报。
讨论:大正方形与圆的比是多少?圆与小正方形的比是多少?大正方形与小正方形的比是多少?
⊙课堂总结
这节课你有哪些收获?
⊙布置作业
教78页“练习十七”。
板书设计:
解决问题
d=a r=
S正-S圆=2r2-3.14r2=0.86r2
S圆-S正=3.14r2- ×2=1.14r2
|
|