③变量t是v的函数吗?为什么?
师生讨论后给出: 一般地,如果两个变量x、y之间的关系可以表示成 (k为常数,k≠0)的形式,那么称y是x的反比例函数.
从 中可知x作为分母,所以x不能为零.
(2).做一做 投影片(B)
①.一个矩形的面积为200平方厘米,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.
2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数
3.课堂练习
随堂练习(P131)
4.活动与探究
已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?
分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.
解:由题意可知y-1= =k(x+2).
当x=1时,y=4.
所以3k=4-1,
k=1.
即表达式为y-1=x+2,
y=x+3.
由上可知y是x的一次函数.
六.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.
七.课后作业
习题5.1
八.板书设计
板书设计:
反比例函数
1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x (k为常数,K≠0)的形式,那么称y是x的反比例函数。 |