|
沙发
楼主 |
发表于 2009-9-8 06:35:00
|
只看该作者
其实,对于三角之类不作严格刻画也无妨的概念,看图识字地说明一下“……像这样的图形叫做三角”就可以了。愿意说成用三条线段组成或围成的图形,当然也可以。过分在文字描述上花力气雕琢,实在意思不大。正如桌子、椅子这样的概念,人人都明白,人人都能正确识别,但要给出定义却比较困难,即使有了定义,作用也不大。所以,对这类概念的条文,淡化为好。
扣字眼发展至极端的另一种表现是扣标点符号。例如,为了训练学生的审题能力,除了给出“一句之别”、“一字之差”的题组练习之外,还设计了“一号之异”的对比题供学生辨析:
修900米公路,前10天平均每天修50米,剩下的5天修完,平均每天修多少米?
修900米公路,前10天平均每天修50米,剩下的5天修完。平均每天修多少米?
该练习的设计意图是,由于逗号改成了句号,使得看似一样的两个问题发生了实质性的变化:前一题求后5天里平均每天修多少米;后一题求前后15天里平均每天修多少米。明明可以说清楚也应该说清楚的地方,故意含糊其词,这种训练,即便有效果,也实在是难为了学生。
话又要说回来,反对死扣字眼,并不是不要关注叙述,而是“适可而止”、“宽容以待”,既注意考虑严格叙述的必要性和实际效果,同时以宽容的心态去评价、去鼓励学生用自己的语言说出对概念实质的领悟。
还需指出,主张“淡化纯文字叙述”的目的是“注重实质”②,而不是推崇教学内容叙述的“卡通化”。近年来新编的数学教材似乎有一种“卡通化”的趋势。它增加了教材的亲和力,受到了儿童的欢迎,这在小学低年级是必要的,因为好的插图还具有帮助缺乏阅读能力的儿童更好地感知问题情境的功能。但一味发展下去,同样有可能“物极必反”。学习数学需要一定的数学阅读能力,这在课堂上主要*阅读数学教材来培养。恐怕谁也不希望我们的数学教材成为养成“卡通化一代”的读物。香港的一些中小学正在开展一场“阅读运动”,就是为了拯救沉迷于卡通读物的新一代。这是我们可以引以为鉴的。
2.钻牛角尖
在应教育处主导地位的年代里,数学教学曾一度追求“讲深讲透”。后来,对认知与教学的阶段性、发展性有了更深刻的认识,意识到“讲深讲透”既无必要,也不可能,但分析教学内容钻牛角尖的倾向却延续了下来。
例如,曾见过这样一道选择题:
白兔只数-( )=白兔比黑兔多的只数
A.白兔只数B.黑兔只数
C.和黑兔同样多的白兔只数
标准答案是C。为什么不能选B,理由是“怎么可从白兔里去掉黑兔呢?”对此,目前有一部分教师已能之一笑,但仍有部分教师认为,要讲算理就得这么讲。岂不知既然是“只数”,就不必计较是白、是黑。再说算理本就是人为的解释,何必只认一条死理,作茧自缚呢?
又如,在一节教学分解质因数的新授课上,教师安排的练习几乎都是围绕着分解质因数的形式做文。如,判断题:
把12分解质因数,下面哪些算式是正确的。(学生读题时教师提醒,这里的“正确”含书写规范)
(1)123×4 ( )
(2)12=1×2×2×3 ( )
(3)2×2×3=12 ( )
(4)12=2×2×3( )
(5)12=3×2×2 ( )其中(3)、(4)、(5)式并无实质区别,但学生判断只有(4)式正确,教师认可。理由是必须从左往右看,从小到大列。课后与教师有段对话。
笔者:为什么要学习分解质因数?
教师:是不是为学习短除法打基础?
笔者:还有呢?
教师:推导求最大公约数和求最小公倍数时要用到分解质因数。
笔者:在这节课中能不能让学生初步感知分解质因数的作用呢?
教师:不知道。
笔者:一个数,比如24,分解因数有几种可能?
教师:有多种。
笔者:分解质因数呢?
教师:如果交换位置不算,就只有一种。
笔者:质因数乘积的组合可以唯一确定一个数,这就是算术基本定理的主要内容。能通俗地渗透在这节课中吗?
教师:能的,不过从没想到,好像教参上也没讲起。
本案例所揭示的是教学同一课题时较为普遍的现象,说专注数学的形式而忽视数学实质,恐怕不为过。毕竟“从左往右看”、“从小到大写”等规定都是次要的,取消这些规定也未尝不可。而分解质因数的意义、作用,尽管只是初步的感性认识,也是更为本质的认知对。
还有不少无关宏旨的细节问题,如:“几份”、“几个”中的“几”是否包括1?三角形的高是一条线段还是一个长度?“x÷4=3……1”是不是程?等等,往往令教师陷入无谓的争论,徒费精力。以“x÷4=3……1”是不是方程为例,是与非,双方都摆了一些论据,谁也说服不了谁。要是换个角度思考,这样的方程有存在的必要,或者说有出现的必要吗?如果把它改写成x÷4=3.25或(x-1)4=3,问题就不复存在。为什么偏要在学生学习小数、分数之前,采用小学特有的表示方法写出这样的方程去为难学生呢?如果为了考察学生能否运用有余数除法各部分之间的关系进行解题,完全可以采用别的形式,以免出现歧义。
|
|