【答案解析】 第一类,经过C的路线,分为两步,从A到C再从C到B,从A到C有2条路可走,从C到B也有两条路可走,由乘法原理,从A经C到B共有2×2=4条不同的路线.
第二类,经过D点的路线,分为两步,从A到D有4条路,从D到B有4条路,由乘法原理,从A经D到B共有4×4=16种不同的走法.
第三类,经过E点的路线,分为两步,从A到E再从E到B,观察发现.各有一条路.所以,从A经E到B共有1种走法.
第四类,经过F点的路线,从A经F到B只有一种走法.
最后由加法原理即可求解.
解:如上右图,从A到B共有下面的走法:
从A经C到B共有2×2=4种走法;
从A经D到B共有4×4=16种走法;
从A经E到B共有1种走法;
从A经F到B共有1种走法.
所以,从A到B共有:
4+16+1+1=22
种不同的走法.
|