|
沙发
楼主 |
发表于 2013-1-11 20:44:59
|
只看该作者
三、专题训练
专题一:根据轴对称及线段垂直平分线性质的作图题
1.如图所示,EFGH是一矩形的弹子球台面,有黑、白两球分别位于A、B两点的位置上,试问:怎样撞击白球,使白球先撞击边EF反弹后再击中黑球?
2.如图所示,一牧人带马群从A点出发,到草地MN放牧,在傍晚回到帐蓬B之前,先带马群到河PQ去给马饮水,试问:牧人应走哪条路线才能使整个放牧的路程最短?
3.某地有两所大学和两条相交叉的公路,如图(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.
(1)你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;
(2)阐述你设计的理由.
专题二:在平面直角坐标系中研究轴对称
1. 已知点A(-2,3)和点B(3,2),点C是x轴上的一个动点,当AC+BC的值最小时,求点C的坐标。
2. 在平面直角坐标系中,求直线y=2x+3关于y轴对称的直线解析式。
3. 已知点M(1-a,2a+2),若点M关于x轴的对称点在第三象限,求a的取值范围。
4. 求直线y=x+1关于x轴的轴对称变换的图形的函数解析式。
专题三:线段垂直平分线性质的运用
1.如图所示,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N,求证:CM=2BM.
2.如图所示,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连结AF.求证:∠BAF=∠ACF.
3.如图所示,OE是△ABC的边AC的垂直平分线,OA平分∠BAC,EO交AB的延长线于D,连结OD、CD.求证:OC平分∠ACD.
四、等腰三角形边与角计算中的分类讨论思想与方程思想
1.已知等腰三角形的一个内角是800,则它的另外两个内角是
2.已知等腰三角形的一个内角是1000,则它的另外两个内角是
3.已知等腰三角形的周长为24,一边长为6,则另外两边的长是
4.已知等腰三角形的周长为24,一边长为10,则另外两边的长是
5.等腰三角形的周长是16,其中两边之差为2,则它的三边的长分别为
6.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高为
7.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角度数为
8.一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,则这个等腰三角形的底边长是
9.已知:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
问:(1)图中有几个等腰三角形? (2)求△ABC各角的度数.
9.如图, ∠DEF =36°,AB=BC=CD=DE=EF,求∠A
五、等腰三角形背景下的证明题
1.等腰△ABC中,AB=AC,D是AB边上一点,
E是AC延长线上一点,且BD=CE,DE交BC于F。
(提示:作DG∥AC,交BC于G)
2.如图所示,F、C是线段BE上的两点,BF=CE,
AB=DE,∠B=∠E,QR∥BE.求证:△PQR是等腰三角形.
3.如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,
DE∥AC交AB于E,
求证:AE=BE.
4. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,
D为 BC的中点.
(1)写出点D到ΔABC三个顶点 A、B、C的距
离的关系(不要求证明)
(2)如果点M、N分别在线段AB、AC上移动,
在移动中保持AN=BM,请判断△DMN的形状,
并证明你的结论
|
|