|
一、教材解读
稍复杂的求一个数的几分之几是多少的应用题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂一些,题目所求的数量不是已知的几分之几所表示的数量,而是与这个数量有关的另一个数量,它是基本的分数乘法应用题的发展。所以稍复杂的分数应用题的教学基础是一步分数乘法应用题和一般复合应用题,而一步分数应用题的教学依据实质上是分数乘法的意义。
教材借助线段图帮助学生分析数量关系,寻求解题思路,重点突出先求出一个数的几分之几是多少,再根据整数加、减应用题的数量关系求出题目要求的数量的解题思路。这种解题思路,学生容易理解,也容易纳入学生的知识结构中去,是后面用方程解分数除法应用题的基础。稍复杂分数除法应用题在解题思路、数量关系与稍复杂分数乘法应用题是完全一致的。同时也与中学解答应用题的方法相一致,为中学应用题学习打基础。所以这种思路是本节课教学的重点,务必是每位学生都能熟练的掌握。教材在这种方法解答后,提出了“还有其他的解法吗?”的问题,让学生思考,使学生在解题时放开思路,加深对数量关系的理解,灵活解答。
二、目标预设
1、通过学生独立的思考,生生间、师生间的多向交流,初步理解,掌握稍复杂的分数乘法应用题的数量关系,每位学生务必学会先求单位“1”这个数量的几分之几是多少,再根据整数加、减应用题的数量关系求出题目要求的数量的解题思路,以此提高学生的分析推理等思维能力。
2、在此基础上,根据班级的实际情况,让学生在解题时开放思路,探讨其他解答,加深对数量关系的理解,达到灵活解答。以此来提高学生数学思维的深刻性与灵活性,体验解答问题的多样性。
3、让学生在经历数学问题的发生、形成、解决的过程中,体会数学与生活的联系,感受数学就在身边,从而对数学产生亲切感,培养数学意识,发展数学眼光,形成良好的数学思考、数学学习的习惯。
三、教学重点
学会先求单位“1”数量的几分之几是多少,再根据整数加、减应用题的数量关系求出题目要求的数量的解题思路,提高思维力。
四、教学资源的开发与利用
1、教学资料的开发与利用,首先每位教师深入研究教材、教参,吃透教材的精神、准确把握知识点、思维点的内涵与外延。使学与教定位处于一个适当“度”的上(包括教学的深度与广度等多个层面)。其次深入钻研《课改》的精神,使教学符合新课改的要求。第3点利用多种媒体广泛查找与本节课有关的教学案例、预案,汲取专家、同行的经验。
2、生活资源的开发与利用。
(1) 研究与学生生活贴近的事例,编成本节课的学习素材。
(2) 收集学生关心的社会生活中的重大事件,编成习题。
3、教学媒体资源的开发与利用。
就目前绝大多数学校的设备和教师工作量的情况,在平时的教学中选取教学媒介的原则我们定为:易得、简捷、经济三个原则。
五、学情分析
1、知识点的学情分析:已掌握简单分数乘法应用题和整数加减法应用题的解题思维,解题技巧。
2、情感态度的分析:绝大部分学生具有良好的学习习惯,积极进取的态度,强烈的自尊心。有上好这节课的欲望,有较强的语言表达能力。
六、教学过程
(一)关系引渡。
1、每生准备一张长方形纸
(1) 把这张长方形纸折一折,平均分成4份,把3份画上阴影。
(2) 看着这个图,你想说什么?(放开来让学生说)(阴影部分、空白部分、整个长方形三者之间有什么关系?)
(意图:给学生提供具体的实物,调动学生的多种感官,在边折边想的活动中复习数量关系,促进学生对分数应用题的数量关系的理解与掌握并达到融会贯通的目的。)
2、根据学生的回答,当学生说到空白部分是整张长方形的1/4时,引导复习,如果知道阴影部分是整张长方形的3/4,怎样知道空白部分是整个长方形的几分之几?(1-3/4)(为例2第2种解法的学习稍作铺垫。)
(二)产生问题。
1、如果这是同学们做校服的一匹布有120米长。给我们学校的同学做校服用去3/4。
2、根据这两个已知条件,你能提出什么问题?
(意图:提出问题比解决问题更有价值,教学中就要培养学生的问题意识,让学生用数学的眼光看待周围事物,带着问题去思考,探索。)
估计学生可能提出:用去多少米? 还剩多少米? 还剩几分之几没有用 ……
(三)解决问题。
1、温故。
(1)用去多少米?这个问题你会解答吗?
那大家能独立解决一下。要求写出:把什么看作单位:“1”和数量关系式。
(2)谁来说说你是怎么做的?你是怎么想的?
(复习求一个数的几分之几是多少?简单分数乘法应用题为过渡到解稍复杂的分数乘法应用题做准备。要求学生写出把谁看作单位“1”,和数量关系式,是学生思考过程的练习。是提高学生思维力的着力点,一般来说学生会思考了,解题就没有问题了。)
2、知新。
(1)还剩多少米?这个问题,你能应用原有的知识解决它吗?
A、首先请大家独立思考,独自解决一下。
B、结果算到30米的请举手。把你的思考方法说给你的同桌听。
C、谁来说说你是怎么做的?(教师在巡视时选定第一种思路的学生回答。)
120—120×3/4
=120—90
=30(米)答:还剩30米。
D、你是怎样想的?
E、我们班的同学很善于思考,学数学就要学数学的思想方法,它比知识更重要。现在请你把他的方法相互转述给你的同桌听。
F、听明白同桌思路的请举手,说说你听到什么?
G、小结:用刚才的思路解答这道应用题的关键是要先求出这快布的3/4是多少,再用布的总米数减去用去的米数,就能求出还剩多少米。(板书)
(例1的第1种思路对学生后继学习非常重要,所以在这里要让学生都能理解与掌握这种思路,形成思维力。)
(2)谁和他的解法不一样的?谁也求到30米的有没有?
A、我们班上的同学很聪明,不但同时能求到正确的结果,而且方法不一样,大家猜猜他可能用什么方法?把你猜的情况与同桌交流交流。
(如果学生做不出,我们先来解答第3个问题还剩几分之几没有用?请在图上标出来,现在你猜到他的方法可能是什么?请你把你的方法说给同学们听)
(3)请刚才有不同方法的同学说说你是怎样做的?
120×(1—3/4)
=120×1/4
=30(米)
(4)你是怎样想的?又是个了不起的数学思想方法。
(5)你们有没有跟他同样的体会?请把你的想法相互转述给你的同桌听。
(6)小结:这种解法的关键是什么?(先求出还剩的米数是总米数的几分之几,然后求还剩的米数,就是求总米数的(1-3/4是多少。)
(7)还有其他的思想方法吗?(如有与大家讨论,如没有转入下一环) 120÷4×1
=30×1
=30(米)
(8)你是怎样想的?
(9)这道题就是我们今天学习的稍复杂的分数除法应用题。(出示课题。)
(10)比较例题与刚才做的题有什么不同?
(11)把书打开到73页,老师将例1改变了,看看有没有不明白的地方?
(四)能力提升。
1、练一练。(有各种方法,放开。)做完以后让学生说说是怎样想的?
2、 看图列式:一瓶可乐500毫升,
已经喝了2/5,
还剩?毫升
(1) 谁能把这副线段图的意思说给大家听听?
(2) 能解决这个问题吗?
(3) 你是怎么做的?你是怎样想的?
3、判断:
(1)2米长的绳子,剪下1/8,还剩1又7/8米。( )
(2)2米长的绳子,剪下1/8,还剩1又7/8。 ()
(3)班级图书角有图书20本,借出1/4,还剩5本。 ( )
让学生说说你是怎样想的?
4、对比练习(口答)
(1)一叠作业本有42本,用去3/7,还剩几分之几?
(2)一叠作业本有42本,用去3/7,用去多少本?
(3)一叠作业本有42本,用去3/7,还剩多少本?
比较这三题有什么不同?(如果来不及,不要。)
5、(看时间再安排。小黑板出示)开放练习:你能用36、2/3两个数编一道和本堂课“稍复杂的分数乘法应用题”相类似的应用题吗?注意数量的合理性。
(五)课堂总结:
这节课学的是什么内容?(比较复杂的分数应用题)
复杂在哪儿?那么解这类问题应该注意什么?
(六)课堂作业:书本76页,练习十六 1-4题。
|
|