|
教材分析
《图形的放大与缩小》选自义务教育课程标准实验教科书《数学》(北师大版)八年级下册。本章节立足学生已有的生活经验,初步的数学活动经历以及掌握的有关几何内容,从相似多边形入手,通过将一个图形放大与缩小,引出位似图形及其简单特性,将图形的相似、位似与已经学习图形和坐标、简单作图等内容巧妙地结合在一起,让学生进一步体会图形相似、位似的应用价值和丰富的内涵,有意识地培养学生积极的情感和态度,促进学生观察、操作、分析、概括等一般能力和审美意识的发展。
教学重点
能够利用作位似图形等方法将一个图形放大或缩小。
教学难点
位似图形的画法。
学生分析
八年级年龄段的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。
设计理念
建立平等合作,互相尊重的师生关系,创设一种师生交流的互动、互学的学习氛围。重视学生的学习进程,关注个体差异,让不同的人在数学学习中得到不同的发挥,利用“Z+Z智能教育平台”制作课件、操作练习,帮助学生理解和学习数学。通过观察、分析、动手、动脑等活动,让学生在“做中学”、“学中做”进而达到“我要学”。
教学目标
1、知识与技能:了解位似图形及其有关概念,能够利用作位似图形等方法将一个图形放大或缩小。
2、过程与方法:学生经历将一个图形放大或缩小的方法,并且在学习和运用过程中发展数学应用意识。
3、情感态度与价值观:培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值。
教学资源
1、利用“Z+Z智能教育平台”制作课件,辅助教学;
2、若干种相似图形的硬纸图板;
3、两付三角板,若干磁扣。
教学流程
一、创设情境 操作引入
1、展示课件:两组图片,一是万里长城雄伟壮丽的画面,二是神州飞船首飞成功的邮票,演示两组图片的缩放过程。
(回顾相似多边形的有关概念和性质,为新课引入进行铺垫,同时渗透爱国主义教育,激发学生的学习兴趣和爱国热情)
2、操作实验:指导全班同学动手操作、进行实验,每位同学拿出自备的两个相似图形纸片,位置任意摆放,连接对应点,观察对应点的连线是否经过一点。同时请三位同学上黑板前台选取不同类型的相似图形(三角形、四边形、五边形)进行演示,供班级同学参考并猜想。
3、放映中国著名球星姚明扣篮雄姿的一组缩放照片,突出对应点所在的直线都经过同一个点,与学生的实验形成对比,引出课题。
板书:§4.9 图形的放大与缩小
二、自主活动 实践感知
1、建构新知:位似图形及其有关概念
如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
2、让学生进一步操作,亲身感受位似图形与相似图形的联系与区别。通过观察、思考、交流、讨论得出如下结论:
位似图形是一种特殊的相似图形,而相似图形未必都能构成位似关系。
(引导学生动手、动脑,观察、思考,感悟知识的生成和变化)
3、认一认:
见课本P136页图4-28(1)、(2)、(3)辨认位似图形,并指认位似中心。
(从正反两个方面强化学生对位似图形的认识)
4、练一练:
例1 下列说法正确的是( )
A.两个图形如果是位似图形,那么这两个图形一定全等;
B.两个图形如果是位似图形,那么这两个图形不一定相似;
C.两个图形如果是相似图形,那么这两个图形一定位似;
D.两个图形如果是位似图形,那么这两个图形一定相似。
例2 下列每组图中的两个多边形,是位似图形的是( )
例3 下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是( )
A.点E B.点F C.点G D.点D
例4 已知上图中,AE∶ED=3∶2,则四边形ABCD与四边形EFGD的位似比为( )
A. 3∶2 B. 2∶3 C. 5∶2 D. 5∶3
(开发学生的思维能力,帮助学生掌握新知)
三、合作探究明确强化
1、量一量:
度量课本P136页图(1)(3)任意一对对应点到位似中心的距离之比,经过猜想,讨论,归纳得出位似图形的性质:
位似图形上任意一对对应点到位似中心的距离之比等于位似比。
利用“Z+Z智能教育平台”制作的课件进行演示,帮助学生理解位似图形的性质。
2、想一想:
本章已学过哪几种放大图形的方法?
(让学生思考、交流,加深对前后知识的理解,感悟知识之间的内在联系)学生归纳:直角坐标系放大图形法;橡皮筋放大图形法。它们都属于位似图形的作法。
(使用数学软件“Z+Z”,演示利用橡皮筋法放大图形,动态直观,清晰明了,进一步验证它属于位似图形的作法)
3、做一做:
按如下方法可以将△ABC的三边缩小为原来的一半:
如图,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F.△DEF的三边就是△ABC相应三边的一半。
(1)任意画一个三角形,用上面的方法亲自试一试;
(2) 如果在射线AO,BO,CO上分别取点D,E,F,
使DO=2OA,EO=2OB,FO=2OC,那么结果又会怎样?
(让学生主动参与,合作探究,调动学生学习积极性)
四、巩固练习 归纳小结
1、试一试:
已知五边形ABCDE,作出一个五边形A’B’C’D’E’,使新五边形 A’B’C’D’E’与原五边形ABCDE对应线段的比为1∶2。
学生利用“Z+Z”数学软件现场作图,可以演示出:
⑴位似五边形在位似中心的同侧;
⑵位似五边形在位似中心的两侧;
⑶位似中心在位似五边形的内部;
⑷位似中心在位似五边形的一条边上;
⑸位似中心在位似五边形的一个顶点上;
……(让学生利用“Z+Z”数学软件现场作图,不仅快速准确,而且可以任意拖动位似中心,构造不同位置与不同形式的位似五边形。形式新、变化多、课堂效果好。切身感受利用“Z+Z智能教育平台”探索数学奥妙的魅力)
2、课堂小结:
(1) 畅谈这节课你的收获与感受。
培养学生分析、归纳、概括能力和语言表述能力)
(2) 总结:位似图形的概念、性质、应用。
(充分发挥学生的主体作用,锻炼学生归纳、整理、表达的能力)
3、实际应用:位似图形在家庭装潢设计上的运用。
(体现数学来源于生活、服务于生活的新课程理念,培养学生的创新精神)
|
|