绿色圃中小学教育网

标题: 期末小学数学常考应用题种类型总结 专项复习(附练习) [打印本页]

作者: 网站工作室    时间: 2021-1-6 21:33
标题: 期末小学数学常考应用题种类型总结 专项复习(附练习)
01
归一问题



【含义】



在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。



【数量关系】



总量÷份数=1份数量



1份数量×所占份数=所求几份的数量



另一总量÷(总量÷份数)=所求份数



【解题思路和方法】



先求出单一量,以单一量为标准,求出所要求的数量。



例1



买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?







(1)买1支铅笔多少钱?0.6÷5=0.12(元)



(2)买16支铅笔需要多少钱?0.12×16=1.92(元)



列成综合算式0.6÷5×16=0.12×16=1.92(元)



答:需要1.92元。



例2



3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?







(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)



(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)



列成综合算式90÷3÷3×5×6=10×30=300(公顷)



答:5台拖拉机6天耕地300公顷。



例3



5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?







(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)



(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)



(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)



列成综合算式105÷(100÷5÷4×7)=3(次)



答:需要运3次。





02
归总问题



【含义】



解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。



【数量关系】



1份数量×份数=总量



总量÷1份数量=份数



总量÷另一份数=另一每份数量



【解题思路和方法】



先求出总数量,再根据题意得出所求的数量。



例1



服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?







(1)这批布总共有多少米?3.2×791=2531.2(米)



(2)现在可以做多少套?2531.2÷2.8=904(套)



列成综合算式3.2×791÷2.8=904(套)、



答:现在可以做904套。



例2



小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?







(1)《红岩》这本书总共多少页?24×12=288(页)



(2)小明几天可以读完《红岩》?288÷36=8(天)

列成综合算式24×12÷36=8(天)



答:小明8天可以读完《红岩》。



例3



食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?







(1)这批蔬菜共有多少千克?50×30=1500(千克)



(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)



列成综合算式50×30÷(50+10)=1500÷60=25(天)



答:这批蔬菜可以吃25天。





03
和差问题



【含义】



已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。



【数量关系】



大数=(和+差)÷2



小数=(和-差)÷2



【解题思路和方法】



简单的题目可以直接套用公式;复杂的题目变通后再用公式。



例1



甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?







甲班人数=(98+6)÷2=52(人)



乙班人数=(98-6)÷2=46(人)



答:甲班有52人,乙班有46人。



例2



长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。







长=(18+2)÷2=10(厘米)



宽=(18-2)÷2=8(厘米)



长方形的面积=10×8=80(平方厘米)



答:长方形的面积为80平方厘米。



例3



有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。







甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知



甲袋化肥重量=(22+2)÷2=12(千克)



丙袋化肥重量=(22-2)÷2=10(千克)



乙袋化肥重量=32-12=20(千克)



答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。



例4



甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?







“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数。



甲与乙的差是(14×2+3),甲与乙的和是97,



因此甲车筐数=(97+14×2+3)÷2=64(筐)



乙车筐数=97-64=33(筐)



答:甲车原来装苹果64筐,乙车原来装苹果33筐。





04
和倍问题



【含义】



已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。



【数量关系】



总和÷(几倍+1)=较小的数



总和-较小的数=较大的数



较小的数×几倍=较大的数



【解题思路和方法】



简单的题目直接利用公式,复杂的题目变通后利用公式。



例1



果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?







(1)杏树有多少棵?248÷(3+1)=62(棵)



(2)桃树有多少棵?62×3=186(棵)



答:杏树有62棵,桃树有186棵。



例2



东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?







(1)西库存粮数=480÷(1.4+1)=200(吨)



(2)东库存粮数=480-200=280(吨)



答:东库存粮280吨,西库存粮200吨。



例3



甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?







每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。



把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量。



两站的车辆总数(52+32)就相当于(2+1)倍,



那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)



所求天数为(52-28)÷(28-24)=6(天)



答:6天以后乙站车辆数是甲站的2倍。



例4



甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?







乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。



因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;



又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;



这时(170+4-6)就相当于(1+2+3)倍。



那么,甲数=(170+4-6)÷(1+2+3)=28

乙数=28×2-4=52

丙数=28×3+6=90



答:甲数是28,乙数是52,丙数是90。





05
差倍问题



【含义】



已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。



【数量关系】



两个数的差÷(几倍-1)=较小的数



较小的数×几倍=较大的数



【解题思路和方法】



简单的题目直接利用公式,复杂的题目变通后利用公式。



例1



果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?







(1)杏树有多少棵?124÷(3-1)=62(棵)



(2)桃树有多少棵?62×3=186(棵)



答:果园里杏树是62棵,桃树是186棵。



例2



爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?







(1)儿子年龄=27÷(4-1)=9(岁)



(2)爸爸年龄=9×4=36(岁)



答:父子二人今年的年龄分别是36岁和9岁。



例3



商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?







如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此



上月盈利=(30-12)÷(2-1)=18(万元)



本月盈利=18+30=48(万元)



答:上月盈利是18万元,本月盈利是48万元。



例4



粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?







由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。



把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,



因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)



运出的小麦数量=94-22=72(吨)



运粮的天数=72÷9=8(天)



答:8天以后剩下的玉米是小麦的3倍。





06
倍比问题



【含义】



有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。



【数量关系】



总量÷一个数量=倍数



另一个数量×倍数=另一总量



【解题思路和方法】



先求出倍数,再用倍比关系求出要求的数。



例1



100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?







(1)3700千克是100千克的多少倍?3700÷100=37(倍)



(2)可以榨油多少千克?40×37=1480(千克)



列成综合算式40×(3700÷100)=1480(千克)



答:可以榨油1480千克。



例2



今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?







(1)48000名是300名的多少倍?48000÷300=160(倍)



(2)共植树多少棵?400×160=64000(棵)



列成综合算式400×(48000÷300)=64000(棵)



答:全县48000名师生共植树64000棵。



例3



凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?







(1)800亩是4亩的几倍?800÷4=200(倍)



(2)800亩收入多少元?11111×200=2222200(元)



(3)16000亩是800亩的几倍?16000÷800=20(倍)



(4)16000亩收入多少元?2222200×20=44444000(元)



答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。





07
相遇问题



【含义】



两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。



【数量关系】



相遇时间=总路程÷(甲速+乙速)



总路程=(甲速+乙速)×相遇时间



【解题思路和方法】



简单的题目可直接利用公式,复杂的题目变通后再利用公式。



例1



南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?







392÷(28+21)=8(小时)



答:经过8小时两船相遇。



例2



小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?







“第二次相遇”可以理解为二人跑了两圈。



因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)



答:二人从出发到第二次相遇需100秒时间。



例3



甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。







“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,



相遇时间=(3×2)÷(15-13)=3(小时)



两地距离=(15+13)×3=84(千米)



答:两地距离是84千米。





08
追及问题



【含义】



两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。



【数量关系】



追及时间=追及路程÷(快速-慢速)



追及路程=(快速-慢速)×追及时间



【解题思路和方法】



简单的题目直接利用公式,复杂的题目变通后利用公式。



例1



好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?







(1)劣马先走12天能走多少千米?75×12=900(千米)



(2)好马几天追上劣马?900÷(120-75)=20(天)



列成综合算式75×12÷(120-75)=900÷45=20(天)



答:好马20天能追上劣马。



例2



小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。







小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。



又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是



(500-200)÷[40×(500÷200)]

=300÷100=3(米)



答:小亮的速度是每秒3米。



例3



我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?







敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。



由此推知



追及时间=[10×(22-6)+60]÷(30-10)

=220÷20=11(小时)



答:解放军在11小时后可以追上敌人。



例4



一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。







这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,



这个时间为16×2÷(48-40)=4(小时)



所以两站间的距离为(48+40)×4=352(千米)



列成综合算式(48+40)×[16×2÷(48-40)]=88×4

=352(千米)



答:甲乙两站的距离是352千米。





09
植树问题



【含义】



按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。



【数量关系】



线形植树棵数=距离÷棵距+1



环形植树棵数=距离÷棵距



方形植树棵数=距离÷棵距-4



三角形植树棵数=距离÷棵距-3



面积植树棵数=面积÷(棵距×行距)



【解题思路和方法】



先弄清楚植树问题的类型,然后可以利用公式。



例1



一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?







136÷2+1=68+1=69(棵)



答:一共要栽69棵垂柳。



例2



一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?







400÷4=100(棵)



答:一共能栽100棵白杨树。



例3



一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?







220×4÷8-4=110-4=106(个)



答:一共可以安装106个照明灯。



例4



给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?







96÷(0.6×0.4)=96÷0.24=400(块)



答:至少需要400块地板砖。



例5



一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?







(1)桥的一边有多少个电杆?500÷50+1=11(个)



(2)桥的两边有多少个电杆?11×2=22(个)



(3)大桥两边可安装多少盏路灯?22×2=44(盏)



答:大桥两边一共可以安装44盏路灯。





10
年龄问题



【含义】



这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。



【数量关系】



年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。



【解题思路和方法】



可以利用“差倍问题”的解题思路和方法。



例1



爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?







35÷5=7(倍)(35 1)÷(5 1)=6(倍)



答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。



例2



母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?







(1)母亲比女儿的年龄大多少岁?37-7=30(岁)



(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)



列成综合算式(37-7)÷(4-1)-7=3(年)



答:3年后母亲的年龄是女儿的4倍。



例3



甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?







这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:



过去某一年 今年 将来某一年



甲 □岁 △岁 61岁



乙 4岁 □岁 △岁



表中两个“□”表示同一个数,两个“△”表示同一个数。



因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,



因此二人年龄差为(61-4)÷3=19(岁)



甲今年的岁数为△=61-19=42(岁)



乙今年的岁数为□=42-19=23(岁)



答:甲今年的岁数是42岁,乙今年的岁数是23岁。








欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2