1. 如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )
A. P1> P2 B. P1< P2 C. P1= P2 D. 以上都有可能
2. 小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是长方形ABCD的两边AD,BC上的点,且EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )
A. B. C. D.
3. 在如图所示的正方形纸片上做随机扎针试验,则针头扎在阴影区域内的概率为( )
A. B. C. D.
4. 小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是____.
5. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木板,那么投中阴影部分的概率为____.
6. 向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.
7. 如图,一只蚂蚁在正方形ABCD区域爬行,点O是AC与BD的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为___.
8. 小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.
(1)求小皮球分别停留在黑色方砖与白色方砖上的概率.
(2)(1)中哪个概率较大?要使这两个概率相等,应改变哪块方砖的颜色?