|
沙发
楼主 |
发表于 2019-1-31 01:10:06
|
只看该作者
五、等腰梯形
1、等腰梯形的性质定理:
等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:
定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线
1、定义:
连接三角形两边中点的线段叫做三角形的中位线。
2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。
七、其他定理或结论:
1、夹在两条平行线间的平行线段相等。
2、三角形的一条中位线与第三边上的中线互相平分。
3、菱形的面积等于其对角线乘积的一半。
4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的 ,所得的三角形的面积是原三角形面积的 。
八、中点四边形
1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。
2. 依次连接任意四边形各边的中点,就得到一个平行四边形。
3. 依次连接平行四边形各边的中点,就得到一个平行四边形。
4. 依次连接矩形各边的中点,就得到一个菱形。
5. 依次连接菱形各边的中点,就得到一个矩形。
6. 依次连接正方形各边的中点,就得到一个正方形。
7. 依次连接等腰梯形各边的中点,就得到一个菱形。
8. 依次连接两条对角线相等的四边形各边的中点,就得到一个菱形。
9. 依次连接两条对角线互相垂直的四边形各边的中点,就得到一个矩形。
10. 依次连接两条对角线相等且互相垂直的四边形各边的中点,就得到一个正方形 |
|