|
沙发
楼主 |
发表于 2019-1-15 20:00:15
|
只看该作者
三)、展示归纳
矩形判定定理1、对角线相等的平行四边形是矩形。
已知:在□ABCD中,AC=BD。求证: □ ABCD是矩形。
证明: ∵四边形ABCD是平行四边形
∴AB=CD
∵BC=CB,AC=BD
∴ △ABC≌ △DCB(SSS)
∴ ∠ABC=∠DCB
∵ AB//CD
∴ ∠ABC+∠DCB=180°
∴ ∠ABC=∠DCB=90°
∴四边形ABCD是矩形
矩形判定定理2:有三个角是直角的四边形是矩形
已知:在四边形ABCD中,∠A=∠B= ∠C=90°
求证:四边形ABCD是矩形
证明:∵ ∠A= ∠B= ∠C=90°
∴ ∠A + ∠B = 180°
∠B + ∠C = 180°
∴AD∥BC, AB∥DC
∴四边形ABCD是平行四边形
∵ ∠A=90°
∴四边形ABCD是矩形
师生互动:学生说出已知和求证,并尝试证明。教师强调证明文字命题的的基本格式,让学生养成规范证明的习惯,认识到数学基本功要靠平时锻炼。一定要重视 “数学基本功”。
3、归纳新知:目前,我们已经学习了矩形的几种判定方法?
学生口述,教师用几何语言出示:
1)、定义判定法
∵在 □ABCD中,∠A=90°
∴ □ABCD是矩形。
2)、判定定理1
∵在四边形ABCD中,∠A=∠B=∠C=90°
∴ 四边形 ABCD是矩形。
3)、判定定理2
∵在□ABCD中, AC=BD
∴ □ABCD是矩形。
设计意图:梳理矩形的三种判定方法,意在让学生理解掌握它们逻辑严密的推理过程。并能灵活运用每一种判定方法,解决实际问题。
|
|