|
沙发
楼主 |
发表于 2019-1-3 15:30:12
|
只看该作者
3.3 解一元一次方程(二)
——去括号与去分母
第2课时 利用去分母解一元一次方程
教学目标:
1.能够熟练地解含有分数系数的方程.
2.进一步提高列一元一次方程解决实际问题的能力.
教学重点:
1.分析实际问题的方法.
2.去分母时符号的处理.
教学难点:分析实际问题中的数量关系、列方程.
教学过程:
一、创设情境,提出问题
出示课本P95问题2:
(1)小组合作探究,列出方程.
(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?
解法1:将方程左边通分得:x=33,
即x=33,x=33×,x=.
解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.
(3)比较两种解法.
二、合作探究
解方程:-2=-.
(1)如何去分母?依据是什么?
(2)方程两边都乘10的过程中有哪些注意事项?
(3)交流解题过程,指出问题,并强调注意事项.
(4)解一元一次方程的一般步骤:
去分母—去括号—移项—合并同类项—系数化1.
课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.
调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”
有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……
请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.
举一反三:
(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?
(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?
(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.
三、课堂练习
1.完成课本P97例3,解下列方程:
(1)-1=2+;
(2)3x+=3-.
交流解题过程,强化注意事项.
四、综合应用,巩固提高
1.完成课本P98练习.
2.解方程1)-=2;
(2)-y+5=-.
(3)=+1;
(4){[x(+3)+5]+7}=1.
4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?
5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?
6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.
五、课时小结
可通过以下问题引导学生小结:
1.去分母解一元一次方程时要注意什么?
2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?
|
|