|
板凳
楼主 |
发表于 2018-11-21 13:50:21
|
只看该作者
(二)共同探索同位角的概念
问题探究:∠1与∠5具有什么样的位置关系?
接上面的方法,先观察上面的4个角,他们是两条直线被第三条所截形成的,可以从下面几个方面逐步思考它们的位置关系:
(1) 它们在被截直线A.b的位置?
(2) 它们在截线c的位置?
学生表述得到的位置关系,可能会得出右侧、上方等说法,利用教具规范说法,得到关键词:同侧、同旁,再给出概念:我们把在被截直线同侧、截线同旁的一对角,叫做:同位角。并完整叙述:∠1与∠5是直线A.b被直线c所截得到的一对同位角。(在图中把∠1与∠5分离出来)
(3)还能发现其他同位角吗?(依次把同学得到的另外3对同位角分离出来)
(4)分离出来的4对同位角,从形状上观察,发现了什么?(字母F型)
(设计说明:这里依然采用分类分步的方法,从简单开始探索。由于同位角、内错角、同旁内角的名称已经固定,所以探索的重点在发现位置关系和用准确词语概括这种位置关系,按照观察—描述—归纳—再现的流程,认识同位角。)
(三)小组合作探索同旁内角、内错角的位置特征
问题探索:类比上面的探索过程,小组合作完成∠1与∠6 、∠1与∠7的位置关系(见附表1),班级交流规范说法后,再统一给出名称。
(设计说明:在认识了同位角的概念后,自主探索同旁内角、内错角是一种发展的眼光认识事物的过程。1.探索的意义在于描述和理解位置关系,并把同种位置关系的角归为一类;2.名称统一给出,给学生以规范,对∠2与∠5加以排除即可。)
三、巩固概念、深化概念
(一)用概念寻找生活中的同位角、内错角、同旁内角(发现)
给出3个简单的实际图形,学生完成:
(1) 图中可以看成是哪两条直线被哪条直线所截?
(2) 哪些角成同位角、内错角、同旁内角?
(设计说明:1.用实际图形呼应开头,体现数学是源于生活;2.简单图形中也要强调截线与被截直线为后面图形变换做准备;3.变式练习,通过一组摆放不同的图形加深对概念的认识。)
(二)用概念识别两个角是不是同位角、内错角、同旁内角(辨析)
展示如右图两个图形,思考:
(1)∠1与∠2是不是同位角、内错角、同旁内角?
(2)如果是,找出是哪两条直线被哪条直线所截形成的。
(3) 旋转到什么位置能构成同位角、内错角、同旁内角呢?
归纳总结:两个角一边共线(截线),再次体会F、U、Z型。
(设计说明:通过辨析错误图形,到改造成正确图形,深化概念的本质认识。课中小结:图形的产生是两条直线被第三条所截;图形的形状类似于字母F、Z、U;两个角的一条边共线—截线!)
(三)合作学习(创造)
在同一平面内,两只手的拇指和食指能构成同位角、内错角、同旁内角吗?同桌合作,一人拼图,一人描述(指出截线、被截直线,哪两个角成什么关系的角)。
(设计说明:让学生感受同位角、内错角、同旁内角是我们身边处处可见的;同桌配合可以提高合作能力;进一步让学生完整的叙述,继续强调截线和被截直线达到巩固和深化概念的目的)
三、应用概念、发展图形
如图,∠1是直线A.b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角.
四、课堂小结
学生谈一谈这节课的收获,根据学生反映可以从下面三维目标上小结:我们主要学了哪些知识?我们体会到了哪些思维方法?你最大的收获是什么?
五、作业布置
• 必做题:习题5.1第2题
• 选做题1. 习题5.1第3题
2. 利用木条为骨架制作一个风筝,在结构图中找一找今天所学的同
位角、同旁内角、内错角。祝你成功!
(设计说明:分层布置作业让不同层次的学生得到适合自身的发展,选做题2首尾呼应,从实际中得到数学知识,再把数学知识运用到实际中去.) |
|