|
七年级数学《一元一次方程》教学案例分析
教学目标:
1.知识与技能
进一步掌握利用一元一次方程解决实际问题。培养分析问题,解决问题的能力。
2.过程与方法
经历分析工程问题中的数量关系,运用方程解决实际问题的过程,进一步体会“建模”思想。
3.情感、态度与价值观
鼓励学生积极思考,合作交流,发展数学才能。
教学重难点:
1.重点:工程中的工作量、工作效率和工作时间的关系,以及找出相等关系。
2.难点:把全部工作看作1。
3.关键:建立等量关系。
评析:目标的制定上从形式上体现了三维目标,但每一项目标都是空洞的,没有可操作性和可检验性,目标显得假、空、大。本课时的目标应为:
1.掌握与工程问题有关的工作量,工作时间,工作效率之间的关系(工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率);
2.能根据它们之间的等量关系形成等式进而列出方程,解决实际问题;
3.能够根据具体问题的实际意义,检验结果是否合理;
4.体会方程是刻画现实世界的一个有效的数学模型。
本课的难点应该是:从具体问题中找出等量关系。这是因为:在小五年级和六年级的教学中,题目中没明确问题的工作量时,都是将工作量视为单位1处理的,只要小学基础在中等水平的学生,都能自觉地将工作量看作单位1,这就体现该知识点不可能成为难点。而题目中所蕴藏的等量关是隐蔽的,学生不易发现,特别是七年级的学生,阅读理解能力有待提高,要发现并用文字表述等量关系是有困难的,为此找出问题中等量关系并用文字表述才是该课时的难点也是关键所在。如果要说难点是:把全部工作量看作1,我认为也应该是:为什么将全部工作量看作单位1。
教学过程及评析:
一、复习提问
师:工程问题有哪三个基本量?这些基本量之间有怎样的关系?
生:工作量=工作效率×工作时间,
师:还可变形为什么?
生:工作效率=工作量÷工作时间;工作时间=工作量÷工作效率
师:问题:一件工作,如果甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少?
生答:
师:怎样理解?
生:也为1小时的工作效率,即1小时完成全部工作的。
师:如果一件工作甲单独做a小时完成,那么甲单独做1小时完成全部工作量的几分之几?
生: 。称为1小时的工作效率。
评析:复习提问这一问题情境设置引入新课,为本节课的学习作了知识铺垫,同时唤醒学生的最近发展区,能使学生更好地理解和掌握该课时的内容。学生在回答中,也称为1小时的工作效率,即1小时完成全部工作的,这种说法是不准确的,应叙述为也是甲1小时的工作量,即甲的工作效率是;同理:如果一件工作甲单独做a小时完成,那么甲单独做1小时完成全部工作量的 ,为甲的工作效率更确切些。
二、教学过程片断评析:
片断一:师:例5:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
师分析:这里可以把工作总量看作1,由一个人单独做要40小时完成,那么每人做1小时的工作量是多少?
师:一个人单独做4小时的工作量是多少?
师:设先安排x人工作,那么x人工作4小时的工作量是多少?
师:再增加2人和x人一起做8小时,完成工作量为多少?
|
|