三、探索实践,建立模型 教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树,在草稿本上画一画。 实物投影或课件出示: 教师:说说你是怎么想的? 预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。 教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法? 预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。 还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数) 教师:不画图,你能把下面的表格填写完整吗? (根据学生回答,教师在课件上输入数据)你发现了什么规律? 预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。 教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解) 教师:回顾这个问题的解答过程,说说你的想法。 归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。 【设计意图】“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。 四、利用新知,解决问题 教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题) 1.在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯? 教师:读完这个题目,你觉得有哪些地方需要特别引起注意? 预设1:单位不统一,要先进行转化再计算。 预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。) 学生练习,指名回答。 2 km=2000 m (2000÷50+1)×2=82(盏) 答:一共要安装82盏路灯。 教师:2000÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装) 2.马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵? 教师:仔细读题,认真思考,说说你对这个题目的理解。 引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数-1”。 25-1=24(棵) 答:一共要栽24棵银杏树。 教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗? 【设计意图】练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。 五、逆向思考,拓展新知 园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? 教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同? 预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。 教师追问:该怎样解答呢?试一试,并说说你的思路。 (36-1)×6=210(m) 答:从第1棵到最后一棵的距离是210 m。 教师:“36-1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。 【设计意图】通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数-1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。 六、回顾思考,全课总结 教师:通过这一节的学习,你有什么收获?跟大家交流一下。 根据学生回答,强调: 1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。 2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。 |