|
沙发
楼主 |
发表于 2014-9-13 16:41:46
|
只看该作者
课题: 第六单元:梯形的面积练习 第 课时 总序第 个教案
课型: 练习 编写时间: 年 月 日 执行时间: 年 月 日
教学内容:教材P97~98练习二十一第1、5~10题。
教学目标:
知识与技能:通过练习使学生能较为熟练地运用梯形的相关知识去解决问题。
过程与方法:培养小组的互助合作精神,体验在这种互助中取得成功的愉悦感受。
情感、态度与价值观:培养学生自助和互助的能力,学会与同伴合作、交流,提高自己提问求助以及指导别人的
能力。
教学重点:熟练运用梯形的相关知识求梯形的面积以及底和高。
教学难点:提高整理、分析、解决问题的能力。
教学方法:学练结合。
教学准备:多媒体。
教学过程
一、复习导入
1.梯形。
(l)我们已经学过了梯形,什么是梯形?
(2)谁来说一说梯形各部分的名称。
(3)在梯形中比较特殊的梯形是什么?(出示直角梯形和等腰梯形。)
2.梯形的面积。
(1)我们在前一节课里利用转化的方法推导出的梯形面积公式是怎样的?
出示:梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
(2)已知梯形的面积以及上底和下底,如何求得高呢?
二、探究新知
灵活运用梯形的面积计算公式解决问题。
出示:一块梯形麦田,上底是35M,下底是25M,面积是1140M2,高是多少M?
思路导引:
方法一:根据梯形的面积计算公式S=(a+b)×h÷2,可以推导出h=S×2÷(a+b),代入已知条件直接计算。
方法二:设高为x m,列方程求解。
学生尝试解答,小组汇报。教师根据学生汇报板书。
方法一:1140×2÷(35+25) 方法二:解:设高为x m.
=2280÷60 (35+25)x ÷2=1140
=38(m) 60x ÷2=1140
x =38
答:高是38m.
提问:求高除了用上面的公式以外,还有别的方法吗?
学生自主发言,再由其余同学和教师来判断是否可行。
三、指导练习
1.教材第97页练习二十一第1题。
(1)教师出示水渠模型,帮助学生理解:水渠横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯
形的下底,渠深就是梯形的高。
(2)学生独立完成习题,教师巡视,发现问题及时纠正。
(3)指名板演,再讲解。
2.教材第98页练习二十一第6题。
注意让学生观察图示找到计算所需条件。花坛的三面围篱笆,形成一个直角梯形。20m就是它的高,用46m-20m可
以得到梯形上底与下底的和。
2.教材第98页练习二十一第8题。
(1)观察这堆圆木的横截面,你有什么新的发现?
学生讨论后汇报,教师提示:横截面是梯形,因此可以用梯形面积计算公式来计算圆木的总根数。
(2)学生计算验证。
(3)圆木顶层根数、底层根数、层数各是梯形的哪一部分?
教师引导学生,并归纳:圆木顶层根数就是梯形的上底,底层根数就是梯形的下底,层数就是梯形的高。
3.教材第98页练习二十一第9题。
(1)学生汇报自己测量的数据和计算结果。
(2)集体交流测量方法和计算方法。
4.教材第98页练习二十一第11*题。
(1)先引导学生读题,理解题意。
(2)组织学生比赛,看谁的方法最多。
(3)汇报交流,全班集体订正。
首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。 剩下的是三角形,可
以用两种方法求面积。
方法一:梯形的面积-剪去的平行四边形的面积
(2+3.5)×1.8÷2-2×1.8=1.35 (cm2)
方法二:用梯形的下底长减去梯形的上底长得到剩下三角形的底长,乘梯形的高, 再除以2,得到剩下的三角形的
面积。
(3.5-2)×1.8÷2 =1.35(cm2)
四、课后小结
通过这节课的学习,你在哪些方面又有了提高?
作业:教材第97~98页练习二十一第5、7、10题。
板书设计:
梯形面积的练习
h=S×2÷(a+b)
方法一:1140×2÷(35+25) 方法二:解:设高为x m.
=2280÷60 (35+25)x ÷2=1140
=38(m) 60x ÷2=1140
x =38
答:高是38m.
梯形中剪去一个最大的平行四边形,求剩下的面积(即三角形的面积)
剩下三角形的面积=梯形的面积-剪去的平行四边形的面积 |
|