|
沙发
楼主 |
发表于 2013-6-6 16:19:14
|
只看该作者
本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是-a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。
在设计教学时,是先让学生把2对相反数分别在不同的数轴上表示出来,让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a 的相反数是-a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚-a不是负数。在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“-”号,新的数就是原数的相反数。例如:-(-6)表示-6的相反数,即是 6。
-[-(-6)] 表示-(-6)的相反数,即是 -6。
再让学生归纳出多重符号化简的规律,是由“-”号的个数来定,当“-”号个数为偶数是,化简结果为正;当“-”号个数为奇数是,化简结果为负。
上完这节课的课后反思:
成功之处是学生对求一个具体的数的相反数,掌握得不错,也理解相反数的代数意义和几何意义。
不足之处有以下几点:
1. 有些学生把相反数和倒数混淆在一起,这一点在设计教学时û有想到。
2. 学生对多重符号简化的规律不太理解,运用得不好。
针对以上问题,我在习题设计上做了修改。
1. 编写几道分别求同一个数的相反数和倒数的题目,让学生区分这两个不同的概念。如:分别求出6的相反数和倒数。这样让学生体会相反数是指一对数,它们的绝对值相等,符号相反;倒数也是指一对数,它们的绝对值不等,符号相同。
2. 把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。
|
|