复习导入
探索新知
巩固练习
小结
| 师:同学们,你们好!很高兴又能和大家一起探讨有趣的数学问题了! 那么今天聪聪将带我们去什么地方探讨怎样的数学问题呢?(课件:出示课本P79主题图)
师:仔细观察找一找图中有哪些学过的图形?
师:好,下面谁来说一说你找到了哪些学过的图形? (教师随着学生的回答点击课件相应的画面)
师:你们知道这两个花坛中哪个面积大吗?
师:那么,谁的想法正确呢?我们一起来验证一下,好吗? 请大家看屏幕。(点击课件,边点击边说) 师:我们把这两个花坛画到纸上,用数方格的方法数数看。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。数一数,它们的面积各是多少? 师:下面请同学们打开书第80页,先独立思考并数一数,然后再和同桌互相交流。
师:好,谁来说一说你是怎么数的。 (师随生说点击课件)
师: 哦,你们数的结果是都是24平方米,说明…… 也就是…… (一生举手,老师示意其发言)
师:这个问题提得很好,那平行四边形的面积公式是什么呢?这就是我们这节课要研究的内容。 (出示课题)
师:下面请同学们继续观察这两个图形,并完成课本第80页下方的表格。完成后想一想,除了面积相等外,它们还有什么关系呢?
师:谁来汇报一下你填的结果? (师随学生汇报点击课件,补充表格)
师:通过这个表格,你们有什么发现呢?
师:大家同意吗? 那谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法? (教师板贴:平行四边形的面积=相邻两边的乘积)
师:那这个猜想对不对呢?请大家想办法验证验证。
师:验证完了吗?
师:这个猜想对吗?
师:那谁来说一说你是怎样验证的?
师:哦,我听明白了。你是这样验证的。(点击课件,演示过程)你画了这样的两个平行四边形,它们的底边相等,与底边相邻的边也相等。那大家看它们的面积相等吗? (点击课件)那这样呢,它们的面积相等吗? (点击课件)这样呢?
师:同学们,你们也是这样验证的吗? 师:看来,这个猜想(指黑板)不正确(在板贴公式的等号上画上斜杠)。那谁还有不同的猜想呢? (教师板贴)
师:能说说你的理由吗?
(师在刚才贴的上面贴上长方形面积公式)
师:那这个猜想到底对不对呢(在平行四边形面积公式的等号上方画上问号)?请大家借助手中的平行四边形卡片、剪刀等学具想办法验证验证。
师:验证完了吗?
师:谁愿意把你的验证方法说给大家听听?
师:你为什么想到这样转化?
师:那你接着说说是怎样把平行四边形转化成长方形的。
师:哦,这位同学是这样(点击课件)沿着平行四边形的一条高剪开,把平行四边形转化成一个长方形。那谁能说说,平行四边形转化成长方形后,什么变了?什么没变? 师:非常正确!转化后,长方形的长与宽分别与平行四边形的底和高有什么关系?(师随生回答在黑板上的公式间标上对等关系。) 师:那现在你们知道平行四边形的面积怎样计算吗?
师:不错,这样我们就验证了平行四边形的面积公式=底×高(指黑板,擦去等号上的“?”号)
师:刚才这位同学是把平行四边形转化成长方形来验证的。不错,谁还有不同的方法? (师随生说点击课件,依次呈现转化图中右侧的转化过程)
师:大家听明白了吗?
师:他们都把平行四边形沿着一条高剪开(点击课件),将平行四边形转化成一个长方形再进行验证的。
师:(小结)(点击课件)看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。 刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,大家都值得表扬。
师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢? (师出示板贴“S=ah”)
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。(出示例1)这道题是书上81页的例1,请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
师:不错,只要知道它的一组底和高就能求面积了。
师:那我们接着再来看一道题(点击课件)你能求出下面平行四边形的面积吗?这就是课本第82页的第2题。请大家在书上完成。
师:谁来说一说你是怎样求的? (师随生说点击课件。)
师:大家同意吗?
师:下面我们继续看这两个平行四边形,(出示书P83(5)题目),仔细观察,想一想它们的面积相等吗?算一算它们的面积各是多少?这就是书上83页的第5题,请大家先独立思考,再两人一组讨论、交流自己的想法。
师:讨论完了吗?谁来说一说你是怎么解决这一问题的? (根据学生回答出示课件)
师:真不错!老师也是这么想的!可以说等底等高的平行四边形的面积相等,大家同意这种说法吗?
师:运用这节课我们所学的知识,我们还可以解决生活中的一些实际问题。请看屏幕。(点击课件)这是我们书上82页的第4题,请同学们一起完成吧。
师:谁来说一说你是怎样解决这一问题的?
师:你完成得很好,在解决问题时也注意了面积单位的变化!
师:下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?
师:看来,大家的收获真不少。只要大家勤动手,勤思考,就一定会学到更多的数学知识,也会变得越来越聪明! 好,今天这节课我们就上到这里,同学们再见!
| 生(齐):老师好! 学生观察、思考。
生1:斑马线上有长方形,地砖上有正方形。 生2:房顶上有三角形,左边的花坛是长方形的,右边的花坛是平行四边形的。 生3:车窗是梯形的。 生4:车轮是圆形的。
生1抢先站起来:长方形的面积大; 生2起来反驳:平行四边形的面积大; 生3:我认为长方形和平行四边形的面积一样大。
学生独立思考后,互相交流。
生1:长方形每行有6格,一共有4行,面积就是6×4=24(平方米);
生2:平行四边形整格的有20个,半格的有8个。不满一格的按半格计算,平行四边形的面积是 20+8÷2 = 24(平方米)。
生(齐):平行四边形的面积和长方形的面积同样大。 生(齐):两个花坛的面积同样大。 生2:我觉得长方形的面积不用这样数。我们已经学过了长方形的面积计算公式,只要数出长和宽,直接计算就可以了。
生3(站起来说):老师,我有一个问题,平行四边形的面积是不是也有计算公式呢,如果有就方便了。
学生填写表格,并思考。
生1:平行四边形的底和长方形的长都是6米;平行四边形的高和长方形的宽都是4米,长方形的面积和平行四边形的面积都是24平方米。
生2:平行四边形的底与长方形的长相等,高与长方形的宽相等,它们的面积也是相等的。
生(齐):同意!
生1:长方形的面积公式是长乘宽,也就是相邻两边的乘积,所以我认为平行四边形的面积公式也应该是相邻两边的乘积。
生集体验证。
生(齐):验证完了。
生(齐):不对。
生1(举起练习本):我画了这样两个平行四边形(如右图),它们的底边相等,与底边相邻的边也相等。如果面积公式是相邻两边相乘,面积应该是相等的,但是一眼就能看出它们的面积并不相等。所以这个猜想不对。
生(齐):不相等。
生(齐):不相等。
生(齐):不相等。
生(齐):是的。
生2:我认为平行四边形的面积公式应该等于它的底乘高。
生2:因为我们刚才填表格时,发现这个长方形的长和这个平行四边形的底相等,长方形的宽又和这个平行四边形的高相等,它们的面积也相等。而长方形的面积等于长乘宽,所以我想平行四边形的面积等于底乘高。
学生分组操作,教师巡视。
生(齐):验证完了。
生1:因为我们刚才发现底和长方形的长相等、高和长方形的宽相等的平行四边形面积和这个长方形的面积相等。我就想到了把平行四边形转化成长方形。
生1(从投影仪演示):我先从平行四边形的一个顶点画了一条高,这样剪出了一个直角三角形和一个直角梯形,把平行四边形转化成了长方形。
生2:形状变了,面积没有变。 生3:转化后的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
生1:知道。因为长方形的长与原来平行四边形的底相等,宽与原来平行四边形的高相等,而长方形的面积=长×宽,所以,平行四边形的面积=底×高。 生2:我也同意平行四边形的面积等于底乘高。
生1(投影以上演示):我的方法和××同学的差不多。但我是这样验证的:我画出了平行四边形的一条高,沿这条高把它剪成两个直角梯形,把一个直角梯形移到另一边,正好拼成一个长方形。
生(齐):听明白了。
生(齐):S等于ah。
生1:平行四边形的面积计算公式是底乘高,这个平行四边形的底是6米,高是4米,所以它的面积就是6×4=24平方米。
生1:平行四边形的一组底和高。
学生独立完成。
生1:我先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。结果是××平方厘米和××平方厘米。 生(齐):同意!
学生先独立思考,在课堂练习本上计算,再两人一组讨论、交流。
生1:这两个平行四边形的底相等,高也相等,因此它们的面积肯定相等。算式是1.4乘2.5等于3.5平方厘米。
生(齐):同意!
学生独立在课堂练习本上练习。
生1:我先求出麦田的面积为250×84=21000(平方米)=2.1(公顷),再求14.7÷2.1=7(吨)
生1:我们用转化的方法推导出平行四边形的面积公式。 生2:我知道了平行四边形的面积公式是S=ah 。 生3:我会用平行四边形的面积公式解决一些实际问题。 生4:我知道了等底等高的平行四边形面积相等。
生(齐):再见!
| 通过复习,运用知识迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想 过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念 通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形
|