|
山东省济南市市中区教研室 董惠平 张绪昌
教学内容:《义务教育课程标准实验教科书 数学五年级下册》第65~66页。
教学目标:
1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。
2.通过动手操作,使学生理解3的就是1的。培养学生的分析、推理能力。
教学重难点:3张饼的是多少张
教学准备:圆形纸片、多媒体课件
课前谈话
师:上课前我们先来交流一下对几个问题的看法:(发明与发现)
① 发明和发现是一回事吗?大家谈一谈什么叫发明,什么叫发现?
生①:发明是原来没有,经过想像创造出来,发现原来就有,后人逐步得到了。大家天天学习的数学知识是发明的?还是发现的?
生①:发明的,阿拉伯数字,就是印度人发明的。
生②:运算定律是发现的,比如说加法的交换律。
生③:数学知识既有发明的又有发现的……
师:大家的分析很有见地,其实就像大家所说的,数学知识既有发现,又有发明,发现靠经验,发明靠聪明,积极地思维,一个好的数学家要发现和发明要兼而有之,才能发现数学世界的新大陆,今天希望我们每一位同学和张老师一起努力既能做知识的发现者,又能做知识的发明者。
【新授】
复习旧知,启动研究问题。【出示题组】
师:老师给大家带来一组除法算式,看看大家谁的反应最快?(课件)
28÷4= 2÷100= 6÷4= 0.7÷2= 9÷10=
师:两个数相除的商有可能是整数,也有可能是小数。
1÷6等与多少呢?
生①:0.1666…
师:1除以6除不尽,结果除了用循环小数,还可以用什么表示?
生②:
师:这是你的猜想,光猜想不行,我们还得验证,经天这节课我们就研究这个问题。
【评析】通过一组口算,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷6得不到一个准确的小数时,又该如何表示?这一问题激发了学生探索的积极性,渗透了合情推理的思维方法。
|
|