W老师的教学设计中缺少学生的认知参与,在教学过程中对大部分学生的学习状态关注不够,以一问一答为主,少数学生理解了隔位退位减的算法,大多数学生仍处于一知半解的状态。我们认为除了上述原因之外,教具(计数器)的操作活动不到位,也是造成学生理解困难的重要原因。布鲁纳认为:在某些数学学习中,儿童会经历三个主要的阶段,即行为表征、形象表征和符号表征。也就是说,儿童的学习应从感知操作到形成表象,最后形成形式化的符号表征。 W老师在利用计数器演示202-108时,没有完整地演示计算过程,仅以百位向十位退1当10为主,并且这一过程是由教师完成的。而由学生完成这一过程会更有利于学生思考。其次,在行为操作后,越过表象操作,直接进入竖式计算(即符号操作阶段),学生的思维缺少足够的表象支撑。教材呈现了拨算珠图说明202-108的算理: 教师用书中也写道:教材“呈现了连续三幅用计数器计算的直观图,形象地说明隔位退位减的全过程”,“不仅有助于学生理解隔位退位减的操作过程,而且也直观地显示了算理,有利于学生在理解算理的基础上掌握算法”。 如何用好这幅图,这就需要将“静态插图”进行“动态演示”,结合教学过程,完整地将拨珠计算过程用图的方式呈现出来,并且学生能通过回忆拨珠过程口述图的画法。这个过程相当于在头脑中进行操作演算,构成了理解算理、掌握算法的有效基础。 对于202-34=178这一学生常见的错误,我们在W老师和X老师的班上通过观察与访谈发现,很多学生在计算隔位退位减法时,无法有效地记住十位上相减时,究竟是0还是9。也就是对“0上打点想作9”这个操作性知识还不能熟练掌握。有的学生做错后,我们刚指出“错了”,他们马上就说“哦,十位上应该是9减3”,并迅速地予以纠正。 那么,学生学习这一内容的困难真的像W老师认为的那样──“在课上既无法避免,也无法消除”吗? 三 通过了解学情与教学案例分析,我们得到以下启发: 因为教学内容已超出学生的“最近发展区”,若仍以探究学习进行试误,再进行例题讲解,可能教学时间无法保证完成教学任务,教学效益不高。因此,在教法选择上应以“有意义接受学习”为主。教师应设计好学习内容的序列,并让学生在思考问题的同时进行相应的操作活动。 利用布鲁纳的操作层次理论,合理地安排利用计数器进行完整计算的行为操作→动态完成计算过程示意图的表象操作→以前两层次为基础的竖式计算过程,即符号操作。引导学生以操作为基础,理解算理,掌握算法,从而学会正确计算隔位退位减法。 对于202-34=178这类错误,我们以为很多学生对于算理是理解的,出现错误的主要原因是短期记忆负担过重。若将计算的思维过程记录下来:(1)个位2减4,不够减,向十位借1;(2)十位是0,向百位借1;(3)百位退1,是10个十;(4)十位向个位退1,十位上还剩9个十;(5)个位的2与十位退的1个十组成12;(6)12减4等于8;(7)要回忆起十位上是9,十位上用9减3等于6;(9)百位上是1。 上述过程中,第四个过程对学生来说是一个记忆难点。前面所学习的退位情况,由于要退位的数位上的数是1~9,很容易想到退位后,该位的数必然比原数少1。而对于数位上是0且要退位的情况,需要理解退位后该位是9的道理并且牢记这一事实,这正是隔位退位减法的难点所在。另外,当学生完成第五、六个过程时,需要注意力高度集中,以完成12减8这一退位减法,当他们完成这一过程后计算十位的结果时,会出现记忆的分配失调而导致十位数据的遗忘。 解决这个难点的方法是借鉴信息加工理论中对短时记忆机制的研究。人们要习得外来信息,必须由感觉记忆进入短时记忆。短时记忆不但保持时间短暂,而且容量有限。除非我们不断复述或思考某些信息,否则它们会在20~30秒之内从短时记忆中消失。事实上,心理学关于短时记忆的研究结论正说明了二年级学生初学隔位退位减的困难所在。而短期记忆中的信息又是以“组块”为单元的,如果能将有联系的相关组块进行组合,就可以得到更大的组块,这个组合过程的关键是学生必须找到小组块之间的联系,使它们之间的组合富有意义。对于计算过程的难点所在──“0上打点想作9”,我们需要借助操作来达成理解,引导学生反复地复述这一事实,使之将操作过程压缩成记忆组块,降低短时记忆的负担。 原来,解决问题的核心在于通过操作理解“0上打点想作9”,让学生形成相应的记忆组块,可实现这个知识点由“过程”向“对象”的转化,亦即是数学教育心理学中的“凝聚”。为便于形成记忆模块,降低学习中的记忆负担,突出学习重点,我在实际教学时将教材中的一个例题改为两个例题,例1为202-8,其作用是形成“0上打点想作9”的记忆组块,例2为202-38,其作用是学习隔位退位减的一般方法。 四 我的教学片段实录── 1.行为操作,理解算理。 教师出示例题:202-8。让学生尝试计算后,提问:202-8究竟怎样算呢?我们一起来请计数器帮帮忙好吗? 202在计数器上怎么拨? 202-8,我们一起来看:个位上只有2颗珠,不够减8怎么办呢? 生:问十位借。 师:十位没珠呀? 生:再问百位借。 师:退一当几? 生:退一当十。 师:谁来拨给大家看看? 学生边说边拨珠:百位退去1颗珠,在十位上拨上10颗珠。 教师再在十位退去1颗珠,提问:这时个位应该有多少颗珠?(12)12减8得?(4)那十位上还剩多少颗珠?(9颗)你怎么知道的?(刚才有10颗珠,借给个位1颗,还有9颗。) 师:这个拨珠过程看清楚了吗?我们一起再来看一遍(师生共同完成拨珠过程。) 教师在拨珠过程中重点提问:个位2不够减8怎么办?十位没有珠怎么办?百位退1退到哪一位?退1当几?十位再向个位退1,还有几颗珠? 通过两次在计数器上的拨珠,学生初步理解了算理。 2.表象操作,巩固算理。 师:如果总是靠拨珠完成计算是不是很麻烦?我们可以把拨珠过程画下来。 教师与学生一起边说计算过程边画图(在第一幅图上逐步完成计算过程,最终得到第三幅图): 这个过程中,教师重点提问:十位上还剩几颗珠?你是怎么知道的? 生:从百位退1到十位,十位有10颗珠;又借给个位1颗,还剩9颗珠。 画“计算过程图”的目的是引导学生在脑海中重温刚才的拨珠活动,使学生能够“在脑海中进行拨珠活动”,这是学生继续学习竖式时的“脚手架”,对“十位上剩下9颗珠”这一学习难点进行知识内化,也是下一个环节——对“0上打点想作9”进行思维“压缩”的基础。 3.符号操作,形成算法。 师:如果每次算减法都让你画个图,方便吗?我们可以利用竖式来计算。个位2减8够吗?(不够)怎么办?(向十位借1)十位上也没有珠呢?(向百位借1) 教师在百位打退位点,同时提问:百位退1到哪位?(十位)十位上有几颗珠? 教师在十位打退位点,同时提问:十位再向个位退1,这时十位还有几颗珠?为什么?也就是说,0上打点可以想作几?(0上打点想作9)教师再请一个学生回答,并提问“为什么”。 师:个位上现在是多少?(12)12减8得4。十位现在还有几颗珠?(9颗)你怎么知道得这么快?(学生再次回答刚才十位的拨珠过程)是啊,那0上打点想作几? 在这一环节,教师的提问紧紧围绕刚才的拨珠活动,使学生能够顺利地利用获得的活动经验进行思维。同时,反复地提问“0上打点想作几”,使学生在明确算理的基础上,对这一数学知识进行思维压缩。 4.形成记忆模块,提升计算技能。 教师依次逐题请学生计算:306-9,100-3,1002-3。 反馈时重点提问:0上打点想作几?选择306-9,请学生说一说为什么? 再逐题出示202-38、1004-238和4003-2124,让学生计算。以202—38为例,反馈时教师重点提问:十位0上打点想作几?十位这时只要计算几减几? 至此,学生已能将“0上打点想作9”这一“过程性知识”转化为“对象性知识”,完成了“内化—压缩—客体化”的过程,学生已经能较为熟练地正确计算隔位退位减法,并且能够在头脑中建立拨珠过程的表象,清晰地理解算理。 我利用这样的教学设计在南京市8所小学进行了教学,学生的计算正确率普遍都在95%以上,出现错误的学生也能够借助拨珠活动的经验进行纠错,并且在后续的练习中正确进行计算。 |