绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4283|回复: 1
打印 上一主题 下一主题

北师大版初中数学九年级上册2.3 第2课时 利用一元二次方程解决面积问题1优秀教案word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-8-16 17:21:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
          此套部编版九年级数学上册教案Word下载绿色圃中小学教育网整理,供大家免费使用下载,转载前请注明出处。 部分图片、表格、公式、特殊符号无法显示需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!
文件预览:
第2课时 利用一元二次方程解决面积问题


1.能够建立一元二次方程模型解决有关面积的问题;(重点、难点)
2.能根据具体问题的实际意义检验结果的合理性.(难点)

一、情景导入
如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?

二、合作探究
探究点:利用一元二次方程解决面积问题
  如图所示,某幼儿园有一道长为16m的墙,计划用32m长的围栏靠墙围成一个面积为120m2的矩形草坪ABCD,求该矩形草坪BC边的长.
解析:若设BC长为xm,则宽AB可表示为32-x2m,由矩形的面积公式“面积=长×宽”可列方程求解.

解:设矩形草坪BC边的长为xm,则宽AB为32-x2m.
根据题意,得x·32-x2=120.
解得x1=12,x2=20.
又由题意知BC≤16,∴x=20不符合题意,应该舍去.
∴该矩形草坪BC边的长为12m.
方法总结:(1)结合图形分析数量关系是解决面积等几何问题时的关键;(2)注意检验一元二次方程的根是否符合题意.
  将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.
解析:做成的是两个正方形,且已知两个正方形的面积之和,只需设出正方形的边长或用未知数表示出边长,列方程解答即可.
解:设一个正方形的周长为xcm,则另一个正方形的周长为(20-x)cm.
(1)由题意可列方程(x4)2+(20-x4)2=17.解此方程,得x1=16,x2=4.
所以两段铁丝的长度分别为16cm和4cm;
(2)由题意可列方程(x4)2+(20-x4)2=12,
此方程化为一般形式为x2-20x+104=0.
∵b2-4ac=(-20)2-4×1×104=-16<0,
∴此方程无解.
∴两个正方形的面积之和不可能等于12cm2.

方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.
三、板书设计
列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:
(1)审:审题要弄清已知量和未知量,问题中的等量关系;
(2)设:设未知数,有直接和间接两种设法,因题而异;
(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;
(4)解:求出所列方程的解;
(5)检:检验方程的解是否正确,是否保证实际问题有意义;
(6)答:根据题意,选择合理的答案.

经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-8-16 17:38:36 | 只看该作者
下载链接 2.3 第2课时 利用一元二次方程解决面积问题1.rar (333.9 KB, 下载次数: 465)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-26 01:01

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表