|
沙发
楼主 |
发表于 2019-1-30 17:38:37
|
只看该作者
05 课堂小结
1.二次函数的定义.
2.熟记二次函数y=ax2+bx+c中,a≠0,a,b,c为常数.
3.如何表示简单变量之间的二次函数关系?
22.1.2 二次函数y=ax2的图象和性质
01 教学目标
1.能够用描点法画函数y=ax2的图象,并能根据图象认识和理解其性质.
2.初步建立二次函数表达式与图象之间的联系,体会数与形的结合与转化.
02 预习反馈
阅读教材P30~32,自学“例1”“思考”“探究”“归纳”,掌握用描点法画函数y=ax2图象的方法,理解其性质,完成下列内容.
1.一般地,当a>0时,抛物线y=ax2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点,a越大,抛物线的开口越小.
2.一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
3.从二次函数y=ax2的图象可以看出:如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.
4.(1)抛物线y=2x2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点;
(2)抛物线y=-3x2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点;
(3)在抛物线y=2x2对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;
(4)在抛物线y=-3x2对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.
03 新课导入
回顾:一次函数的图象是一条直线.
思考:二次函数的图象是什么形状呢?还记得如何用描点法画一个函数的图象吗?
画函数图象的一般步骤:列表、描点、连线.
导入:你能画出二次函数y=x2的图象吗?
第一步:列表:
x … -3 -2 -1 0 1 2 3 …
y=x2 … 9 4 1 0 1 4 9 …
第二步:描点,在平面直角坐标系中描出表中各点,如图1.
图1
图2
第三步:连线,用平滑的曲线顺次连接各点,就得到二次函数y=x2的图象,如图2.
思考:观察函数y=x2的图象,它有什么特点?
总结:(1)二次函数的图象是一条曲线,它的开口向上,这条曲线叫做抛物线;
(2)抛物线y=x2的对称轴是y轴,抛物线与它的对称轴的交点是(0,0),它是图象的最低点,叫做抛物线的顶点;
(3)在对称轴的左侧,抛物线y=x2从左到右下降;在对称轴的右侧,抛物线y=x2从左到右上升.也就是说,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.
04 新课讲授
例1 (教材P30例1)在同一直角坐标系中,画出函数y=12x2,y=2x2的图象.
【解答】 分别列表,画出它们的图象,如图.
x … -4 -3 -2 -1 0 1 2 3 4 …
y=12x2
… 8 4.5 2 0.5 0 0.5 2 4.5 8 …
x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …
y=2x2 … 8 4.5 2 0.5 0 0.5 2 4.5 8 …
思考:函数y=12x2,y=2x2的图象与函数y=x2的图象相比,有什么共同点和不同点?
总结:共同点是开口向上,对称轴是y轴,顶点是原点;不同点是开口大小不同,x2的系数越大,抛物线的开口越小.
例2 (教材P30例1的变式)在同一直角坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?
【解答】 画出图象如图.
思考:当a<0时,二次函数y=ax2的图象有什么特点?
【点拨】 可从开口方向、对称轴、顶点、开口大小去比较和寻找规律.
【跟踪训练1】 (1)函数y=-2x2的图象是抛物线,顶点坐标是(0,0),对称轴是y轴,开口方向是向下;
(2)函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.
解:根据抛物线y=ax2中a的值来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.
【点拨】 抛物线y=ax2,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.
|
|