|
沙发
楼主 |
发表于 2019-1-29 12:32:50
|
只看该作者
三、课后练习
1.下列说法正确的是( )
A.过一点A的圆的圆心可以是平面上任意点
B.过两点A、B的圆的圆心在一条直线上
C.过三点A、B、C的圆的圆心有且只有一点
D.过四点A、B、C、D的圆不存在
2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是( )
A.a=15,b=12,c=1B.a=5,b=12,c=12
C.a=5,b=12,c=13D.a=5,b=12,c=14
3.一个三角形的外心在其内部,则这个三角形是( )
A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形
4.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为( )
A.5cmB.6cmC.7cmD.8cm
5.等边三角形的外接圆的半径等于边长的( )倍.
A. B. C. D.
6.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )
A.2B.6C.12D.7
7.三角形的外心具有的性质是( )
A.到三边距离相等B.到三个顶点距离相等
C.外心在三角形外D.外心在三角形内
8.对于三角形的外心,下列说法错误的是( )
A.它到三角形三个顶点的距离相等
B.它与三角形三个顶点的连线平分三内角
C.它到任一顶点的距离等于这三角形的外接圆半径
D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点
9.下列说法错误的是( )
A.过直线上两点和直线外一点,可以确定一个圆
B.任意一个圆都有无数个内接三角形
C.任意一个三角形都有无数个外接圆
D.同一圆的内接三角形的外心都在同一个点上
10.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是( )
A.菱形B.等腰梯形C.矩形D.正方形
11.若AB=4cm,则过点A、B且半径为3cm的圆有 个.
12.直角三角形三个顶点都在以 为圆心,以 为半径的圆上,直角三角形的外心是 .
13.若Rt△ABC的斜边是AB,它的外接圆面积是121πcm2,则AB= .
14.△ABC的三边3,2, ,设其三条高的交点为H,外心为O,则OH= .
15.在△ABC中,∠C=90°,AB=6,则其外心与垂心的距离为 .
16.外心不在三角形的外部,这三角形的形状是.
17.锐角△ABC中,当∠A逐渐增大时,其外心向 边移动,∠A=90°,外心位置是 .
18.△ABC的外心是它的两条中线交点,则△ABC的形状为 .
19.如图是一块破碎的圆形木盖,试确定它的圆心.
20.求边长是6cm的等边三角形的外接圆的半径.
21.已知线段a、b、c.求作:(1)△ABC,使BC=a,AC=b,AB=c;(2)⊙O使它经过点B、C,且圆心O在AB上.(作⊙O不要求写作法,但要保留作图痕迹)
22.已知点P在圆周上的点的最小距离为5cm,最大距离为15cm,求该圆的半径.
23.如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观.为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎样找到圆心半径? |
|