绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 16485|回复: 1
打印 上一主题 下一主题

人教版七年级上册数学公开课优秀教案《有理数的乘方》教学设计与反思

[复制链接]
跳转到指定楼层
楼主
发表于 2019-1-1 14:03:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
人教版七年级上册数学公开课优秀教案《有理数的乘方》教学设计与反思
1.5 有理数的乘方
1.5.1 乘 方
第1课时 乘 方


1.理解有理数乘方的意义;
2.掌握有理数乘方的运算;(重点、难点)
3.能利用数学知识解决实际问题,激发学生学习的兴趣,树立解决问题的信心.                 

一、情境导入
古希腊数学家阿基米德与国王下棋,国王输了,问阿基米德要什么奖赏.阿基米德对国王说:“我只要在棋盘上第一格放一颗麦子,在第二个格子中放进前一个格子的两倍,每一个格子中都是前一个格子中麦子数量的两倍,一直将棋盘每一个格子摆满.”国王觉得很容易就可以满足他的要求,于是就同意了.但很快国王就发现,即使将国库所有的粮食都给他也不够.你们知道这是为什么吗?
二、合作探究
探究点一:乘方的意义
  把下列各式写成乘方的形式,并指出底数和指数各是什么.
(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14);
(2)25×25×25×25×25×25;
(3)m•m•m•…•m,\s\up6(,2n个m)).
解析:首先化成幂的形式,再指出底数和指数各是什么.
解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5;
(2)25×25×25×25×25×25=(25)6,其中底数是25,指数是6;
(3)m•m•m•…•m,\s\up6(,2n个m))=m2n,其中底数是m,指数是2n.
方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.
探究点二:乘方的运算
  计算:(1)-(-3)3;  (2)(-34)2;
(3)(-23)3;  (4)(-1)2015.
解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.
解:(1)-(-3)3=-(-33)=33=3×3×3=27;
(2)(-34)2=34×34=916;
(3)(-23)3=-(23×23×23)=-827;
(4)(-1)2015=-1.
方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.
探究点三:与乘方有关的探求规律问题
  有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,求:
(1)对折2次后,厚度为多少毫米?
(2)对折20次后,厚度为多少毫米?
解析:要求每次对折后纸的厚度,应先求出每次折叠后纸的层数,再用每张的厚度乘以纸的层数即可.纸的对折次数与纸的层数关系如下:
对折次数        1        2        3        4        …        20
纸的层数                                               
2        4        8        16        …                       
21        22        23        24        …        220       
解:(1)∵有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,
∴对折2次的厚度是0.1×22毫米.
答:对折2次的厚度是0.4毫米;
(2)对折20次的厚度是0.1×220毫米=104857.6(毫米),
答:对折20次的厚度是104857.6毫米.
方法总结:解决本题的关键是将纸的层数化为幂的形式,找出这些幂与对折次数的对应关系.
三、板书设计
1.有理数乘方的意义
2.有理数乘方运算的符号法则:
负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.
3.与乘方有关的探求规律问题

本节教学以故事引入,提出问题,引导学生积极思考,并归结出答案,由答案的表现形式向学生提出问题,激发学生的求知欲望.在教师的启发诱导下自然过度到新知识的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知识的理解和掌握.

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2019-1-1 14:03:55 | 只看该作者
1.5.1   乘方
第1课时 乘方
教学目标:
1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
2.已知一个数,会求出它的正整数指数幂,渗透转化思想.
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
教学过程设计:
(一)创设情境,导入新课
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a•a记作a2,读作a的平方(或a的2次方),即a2=a•a;a•a•a记作a3,读作a的立方(或a的3次方),即a3=a•a•a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
说明1)举例94来说明概念及读法.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
点拨1)计算时仍然是要先确定符号,再确定绝对值.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是0.
【例2】计算:
(1)()3;     (2)(-)3;
(3)(-)4;        (4)-;
(5)-22×(-3)2;        (6)-22+(-3)2.
(四)总结反思,拓展升华
1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(五)课堂跟踪反馈
1.课本P42练习第1、2题.
2.补充练习
(1)在(-2)6中,指数为    ,底数为    .
(2)在-26中,指数为    ,底数为    .
(3)若a2=16,则a=    .
(4)平方等于本身的数是    ,立方等于本身的数是    .
(5)下列说法中正确的是(  )
A.平方得9的数是3
B.平方得-9的数是-3
C.一个数的平方只能是正数
D.一个数的平方不能是负数
(6)下列各组数中,不相等的是(  )
A.(-3)2与-32        B.(-3)2与32
C.(-2)3与-23        D.|2|3与|-23|
(7)下列各式中计算不正确的是(  )
A.(-1)2003=-1
B.-12002=1
C.(-1)2n=1(n为正整数)
D.(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是(  )
A.|a+1|        B.(a-1)2
C.-(-a)        D.||

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-29 09:27

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表