|
探索一个既约分数化成有限小数的规律:分母只含有素因数2和5。学生都不能找出一个分数化成有限小数还是无限小数跟分母有关?我想,主要的原因就是没有给学生一个好的认知起点。学生都选择:“分子除以分母”的方法化成小数,老师也没有要求学生用第二种方法化成小数。一个有限小数都能化成分母是10、100、1000…的分数,这是学生探索这个规律的认知起点,而他们没有这个起点,如何让学生探索这个规律呢?
一个分数化成有限小数还是无限小数跟分母有关?直接告诉学生。我认为这还是有待商榷的。这是本节课的教学难点,难道我们就这样直截了当的告诉他们吗?课堂中学生不仅需要掌握分数能否化成有限小数的规律,更重要的是需要掌握解决难题的能力,掌握遇到实际问题如何解决的能力。我们应该让学生的视角从狭窄的思维中解放出来,更多地提供教学情境,让学生在情境中解决难点,让学生在亲身经历活动中的各种问题,不断尝试,不断探索,学会解决问题的方法。
课堂教学活动是可预设,但课堂教学又是生动地、有些是无法预设的。如9/16开始我想这个分数计算的结果是四位小数,学生计算太麻烦就把它舍弃。可后来我知道其实这个分数是不可缺的。首先它可以复习我们五上学的内容:怎样判断积的末尾有几个零?(看这个数可分成几队2和5,它就有几个0)所以在课前应做一些分解素因数的题。其次它能化解难点:把9/16用第二种方法化成小数,先要化成分母是10、100、1000….的分数。只要他能把这一题能化成分母是100000的分数。那么后面“一个分数能化成有限小数还是无限小数跟什么有关?”这个大难题就迎刃而解了,探索分数化成有限小数的规律:分母只含有素因数2和5,也就水道渠成。
一个分数化成有限小数还是无限小数跟分母有关?直接告诉学生。我认为这还是有待商榷的。这是本节课的教学难点,难道我们就这样直截了当的告诉他们吗?课堂中学生不仅需要掌握分数能否化成有限小数的规律,更重要的是需要掌握解决难题的能力,掌握遇到实际问题如何解决的能力。我们应该让学生的视角从狭窄的思维中解放出来,更多地提供教学情境,让学生在情境中解决难点,让学生在亲身经历活动中的各种问题,不断尝试,不断探索,学会解决问题的方法。
课堂教学活动是可预设,但课堂教学又是生动地、有些是无法预设的。如9/16开始我想这个分数计算的结果是四位小数,学生计算太麻烦就把它舍弃。可后来我知道其实这个分数是不可缺的。首先它可以复习我们五上学的内容:怎样判断积的末尾有几个零?(看这个数可分成几队2和5,它就有几个0)所以在课前应做一些分解素因数的题。其次它能化解难点:把9/16用第二种方法化成小数,先要化成分母是10、100、1000….的分数。只要他能把这一题能化成分母是100000的分数。那么后面“一个分数能化成有限小数还是无限小数跟什么有关?”这个大难题就迎刃而解了,探索分数化成有限小数的规律:分母只含有素因数2和5,也就水道渠成。
|
|