|
板凳
楼主 |
发表于 2009-8-17 07:02:00
|
只看该作者
二、“概念为本”教学的深化:进一步理解平均数的本质及性质
初步认识了平均数的统计学意义后,张老师仍然进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的性质,丰富学生对平均数的理解,也为学生灵活解决有关平均数的问题提供知识和方法上的支持。算术平均数有如下性质:
1.一组数据的平均数易受这组数据中每一个数据的影响,“稍有风吹草动”就能带来平均数的变化”,即敏感性。
2.一组数据的平均数介于这组数据的最小值与最大值之间。
3.一组数据中每一个数与算术平均数之差(称为离均差)的总和等于0,即:
其中xi总是原始数据,x是这组数据的算术平均数。
4.给一组数据中的每一个数加上一个常数C,则所得到的新数组的平均数为原来数组的平均数加上常数C。
5.一组数据中的每一个数乘上一个常数C,则所得到的新数组的平均数为原来数组的平均数乘常数C。
这些抽象的性质如何让小学生理解呢?张老师仍然是在巧妙的数据设计以及适时的把握本质的追问中让学生进一步深化对平均数性质的认识。数据设计的巧妙主要体现在:
首先,在统计张老师自己的投球水平时,张老师“搞特殊”,可以投四次。基于前面学生对平均数的初步感知,学生认可用老师四次投中个数的平均数来代表老师的整体水平,但张老师在第四次投中多少个球上大做文章:前三次的平均数是5,那么老师肯定是并列第一了?一组数据中前三个数据大小不变,只是第四个数据发生变化,会导致平均数产生什么样的变化呢?在疑问与困惑(当然有很多学生是“清醒”的)中,教师首先出示了“极端数据二”(1个球),进一步深化学生对平均数代表性的理解,初步体验平均数的敏感性。
其次,假设张老师第四次投中5个、9个,张老师1分钟投球的平均数分别是多少?根据统计图直观估计、计算或者根据平均数的意义进行推理都能求出平均数,多种方
法求解发挥了学生的聪明才智,使学生的潜能得以发挥,体验成功感进而体验创造学习的乐趣。
再次,将张老师1分钟投球的三幅统计图同时呈现,让学生对比分析、独立思考再小组讨论。由于三幅统计图中前三个数据相同,只有第四个数据不同,学生能够进一步
理解平均数的敏感性:任何一个数据的风吹草动,都会使平均数发生变化。学生发现平均数总是介于最小的数与最大的数之间:多的要移一些补给少的,最后平均数当然要比最大的小比最小的大了。学生还发现:“总数每增加4,平均数并不增加4,而是只增加1。”教师适时追问:“要是这里的每一个数都增加4,平均数又会增加多少呢?还会是1吗?”
再进一步观察三幅统计图中的第一幅图,教师迫问:比较一下超过平均数的部分与不到平均数的部分,你发现了什么?
生:超过的部分和不到的部分一样多,都是3个。
师:会不会只是一种巧合呢?让我们赶紧再来看看另两幅图吧?
通过进一步观察其他几幅统计图,学生真正理解了并用自己形象生动的语言描述出:“就像山峰与山谷‘样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。”
在上述问题情境中,以“问题”为导向,借助于直观的统计图以及学生的估计或者计算,学生思维上、情感上经历一筹莫展、若有所思、茅塞顿开、悠然心会的过程,对平均数的意义以及性质都有了深切的体会。
有前述对平均数意义以及性质的了解,学生是否真正理解了平均数的概念呢?叙述出概念的定义或者会计算不等于真正理解某个概念,还要看能否在不同情境中运用概念。由于平均数这个概念对小学生而言是非常抽象的(如前所说,它是“虚幻的数”,学生不能具体看到),平均数的背景也很复杂,如果学生能在稍复杂的背景下运用平均数的概念解决问题,说明学生初步理解了平均数。
因此,张老师设计了四个复杂程度不同的问题,即“纸带平均长短”“球员平均身高”“平均水深”“平均寿命”,这四个问题中的平均数的复杂程度不同。
前两个问题中的平均数比较简单,数据的个数都是有限个,而且又有直观图形做理解上的支撑,因此前两个问题是简单应用平均数的性质——离差之和为零,即有比平均
数大的数据就一定有比平均数小的数据。学生可以借助于直观图形以及计算求出这两个问题中的平均数。在“纸带”问题中数据的呈现方式不同于前面,是横向呈现,但平均
数的意义不变,淡化呈现形式强化意义理解,为学生理解平均数提供另一视角。“球员平均身高”问题不是让学生计算球员的平均身高而是让学生借助平均数的性质进行推理
判断,并通过学生熟悉的中国男子篮球队队员的平均身高以及姚明的特殊身高深化对平均数的理解。
最后两个情境的平均数是比较复杂的,是以样本的平均数代替总体的平均数。例如,平均水深到底是什么意思呢?可以是随机选取有限个点,测量这些点到水底的距离,再求这些距离的平均数作为池塘平均水深的代表值。同样,2008年中国男性的平均寿命也是通过计算样本的平均年龄来表示全体中国男性的平均年龄。
真正理解这些平均数的意义对小学生而言有难度。因此,张老师在教学中呈现子池塘的截面图,并标注出五个距离,将复杂的问题简单化,使学生仍能借助于平均数的性
质理解冬冬下水游泳仍有危险。通过平均数意义的强化,使学生能从数学的角度解释是否有危险,避免学生从其他角度解释。在解释男性平均寿命问题中,借助于学生亲人的年龄这样的特殊而具体的数据,来理解平均寿命是71岁不等于每个男人都活到71岁。但不是所有的学生都能借助于前面所学平均数的意义和性质来解释这些问题,学生很难真正理解这两个情境下的平均数的意义。 |
|