|
教学目标
1.认识工程问题的特点,理解工作总量可以用单位“1”来表示。工作效率可以用单位时间内完成工作量的几分之一来表示。
2.理解掌握工程问题的数量关系和解答方法。
3.培养学生利用已有的知识分析解答新问题的能力。
教学重点和难点
学会怎样用单位“1”表示工作总量,以及用单位时间内完成工作总量的几分之一表示工作效率。掌握工程问题的解答方法。
教学过程
(一)复习准备
1.以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)
它们之间有什么关系呢?
学生口述,教师出示投影:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
2.一条水渠长120米,5天修完,平均每天修多少米?
依据三量关系,这道题已知什么?求什么?怎样列式?(120÷5=24(米))
24表示什么?(工作效率)
之几。它们都是用工作量÷工作时间得到的。
工作效率既可以是具体数量,也可以用单位时间内完成的占全部工作量的几分之一来表示。
(二)学习新课
1.出示例10。
例10 一段公路和长30千米。甲队单独修10天完成,乙队单独修15天完成,两队合修几天完成?
2.分析解答。
(1)读题,思考,列式,解答,做在练习本上。
(2)说说你是怎样列式的?
30÷(30÷10+30÷15)
根据什么列式?(工作总量÷工作效率和=工作时间)
30÷10求的是什么? 30÷15求的是什么?
这两个商加起来,得到的是什么?(甲队和乙队的工效和。)
再用30除以它们的和得到的是什么?(合修所用的工作时间。)
(3)板书解答过程:
30÷(30÷10+30÷15)
=30÷(3+2)
=30÷5
=6(天)
答:两队合修6天可以完成。
3.变换题中的条件再分析解答。
(1)把30千米改为40千米、45千米、500千米、10千米、2千米。请你们以小组为单位,每一组选择一个数据解答出来。
(2)谁能说说你们组选择的工作量是多少米?解答的结果是多少?
每一组推选一名同学回答,结果都是6天。
(3)既然工作总量发生变化而结果不变,那么我们去掉题中工作总量的具体数量,这道题还能不能解答?
4.改造例10:去掉具体的工作总量。
一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?
(1)以讨论题为线索,讨论这道题可以怎样解答。
出示讨论题:
①这道题求哪个量?应已知哪些条件?
②工作总量没有给出具体数量怎么办?(用“1”表示。)
③甲队的工作效率和乙队的工作效率怎样表示?甲队、乙队的工效
(2)汇报讨论结果。(先说讨论题再说解答方法。)
1表示什么?(工作总量)
工作总量不是具体数量,我们把它看作单位“1”。
工作总量用单位“1”表示,那么工作效率就要用每天完成单位“1”的几分之一来表示。
(3)板书解答过程:
答:两队合修6天可以完成。
|
|