|
沙发
楼主 |
发表于 2012-11-15 20:19:01
|
只看该作者
三、教学方法及策略:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1、教学方法:
根据本节课的特点、目标要求及学生的实际情况,在教学方法上主要采用引导观察启发,组织实践探索交流、提问引导探索发现等方法进行本节课的教学活动。
2、教学的理论依据及教学策略
首先《数学课程标准》中明确要求在知识传授的同时,更要注重学生学习活动的过程以及相应的情感态度。将抽象的数学问题进行形象化、生活化是当前新一轮基础教育课程改革下所积极倡导的。因此紧密联系学生的生活经历和经验开展本节课的教学内容十分必要。将学生放在课堂教学的主体位置上,自己成为课堂的组织者、引导者并最终成为与学生的合作者是自己在本节课教学中的一个主导思想。
其次,数学作为基础性的自然学科,很多知识的获取必须通过耐心细致的观察,特别是本节课,主要是通过一次函数的图象去获取信息(已知条件)进而去解决问题,因此引导学生进行大量细致的观察活动是十分必要的,这也是对学生一种良好学习习惯的培养。实践是验证结论最好的办法,所以本节课还特别安排学生进行了相应的实践验证活动,但数学实践并不一定是具体的实物操作,完全可以利用教材、多媒体网络资源开展,本节课就是如此。
再次,充分引导组织学生参与学习活动中来,就必须要开展学生之间、师生之间的交流讨论与互动活动,因此本节课安排了一定的相关活动,使学生充分融入到学习活动中来。体现并凸现学生参与学习活动的过程。同时,探索发现新的结论是数学学科一重大特点,为了解决难点问题,在进行“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”这一问题的教学时,充分引导学生开展大胆质疑、主动探索、发现结论、解决问题、树立成就感等一系列活动,难点问题解决的同时,也培养了学生创新精神,也可以在某种程度上培养学生主动学习的探索意识。
本节课自己将充分依据《数学课程标准》中所倡导的教师角色,即在课堂教学中真正意义上地成为学生学习活动过程中的组织者、引导者和合作者。充分与学生开展互动活动,与他们共同质疑、共同困惑、共同寻求解决问题的办法。同时在组织学生进行实践的过程中引导学生积极开展交流讨论活动,实现生生间的互动。同时,对教材内容进行一定的创造性使用,以达到更佳的效果。
3、学习方法:
本节课在对学生进行学法指导上,主要是要求和引导学生采用实践探索的方法,进而培养学生数学学习的良好习惯,渗透终身学习的意识,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。指导学生对一次函数的图象进行耐心细致的观察,使学生充分意识到细致的观察、审清题意是应用一次函数图象解决问题的基础和关键,通过范例使学生亲身体会到明确函数图象中两坐标轴所表示的实际意义是解决此类问题的关键。通过该方法的学习培养,帮助学生积累学习方法的同时,也使他们养成耐心细致的学习习惯。交流讨论与合作关系是本节课学生学习活动过程中的重点,通过该学习方法,使学生们充分意识到在数学学习中要互相帮助、互相促进,体会到团队的力量大与个人力量。引导学生主动探索发现新的数学结论是本节课学生学习方法的另一个重要的方面,可以使学生敢于发表自己的独到观点和想法,在函数与方程的关系的学习中,在自己的引导启发下,充分尊重学生的观点及想法,通过实践验证,发现新结论,进而培养学生主动探索新知识,发现新问题的终身学习意识。同时也可以帮助学生树立起获取新知识后的成就感,增强数学学习的信心和兴趣。
四、教学程序:
本节课的教学程序由以下几个环节构成,即创设情境、初步感受、经历体验、探究发现、问题解决、收获体会共六大环节。
1、创设情境:
这是本节课的引入(导入)部分,借助于多媒体,展示兴凯湖美丽的自然风光(培养热爱家乡、热爱大自然的情感),过度到干旱的荒漠地带的图片,引起学生强烈的震撼,进而过度到吉林省吉林市一家苯化工厂发生爆炸造成松花江水污染的生活实例(渗透环抱教育)。在此基础上,利用水库水的逐渐干涸以及松花江水中苯含量会随时间的推移而逐渐减少直至完全消失为情境,引出课题,明确学习目标及任务。该导入设计,一方面贴近学生的生活实际,与本节课的内容恰到好处的自然融合,而且还对学生进行了思想教育,一举两得。
2、初步感受:
本环节主要是引导组织学生对一次函数图象应用的问题进行初步的感受,师引导学从已有的学习经验出发,利用大屏幕展示教材中的引例,提出环环相扣的问题,例如问题;图象中反映的是哪两个变量的关系?横轴表示的是什么?纵轴表示的是什么?你能从图象中获取哪些信息?你是如何获取的?等等。这一设计旨在使学生意识到如何去从函数的图象中去获取有效的信息进而去解决问题,同时在本环节中特别地引导学生将函数中的数学语言向生活语言转化,这也是此类问题解决时学生必须处理好的关键环节,如果这两个方面的问题处理好了,学生解决此类问题就会更容易一些。其实本环节也是为学生打好基础的一个环节。既是新知识的学习环节,也是新知识的准备和铺垫的环节,该环节将对下面的学习起到至关重要的作用。同时本环节中学生将亲身体会到如何利用一次函数的图象解决问题。特别地借助于教材中的图象引导组织学生开展了猜想、实践等活动。整个环节中,自己始终利用大屏幕进行相应结论的直观展示,使课堂教学呈现形象化和直观化。
3、经历体验:
本环节是本节课的重点内容,即例题的学习解决的过程,也是应用一次函数的图象解决具体问题的过程,由于在上一个环节中学生已对此类问题有了亲身的感受,因此本环节虽是解答教材中的例题,但难度并不大,学生完全可以独立完成,特别本例题是一道摩托车行驶路程与油箱剩余油量关系的一次函数图象,与学生的生活经历密切联系,所以学生在解答中对题意的理解上不会出现问题。为了更好地使问题直观化和形象化,自己利用多媒体课件进行了动态演示,使学生直观地体验到了随着行驶路程的增加摩托车油箱内剩余油量在逐渐减少这一变化过程。因此本环节中自己将更多的时间留给了学生,由他们在交流讨论中独立地完成例题的解决。但由于本题描述的是“摩托车油箱中的剩余油量与摩托车行驶路程的关系”而并非“摩托车油箱中的消耗油量与摩托车行驶路程的关系”,如果学生审题不清很容易出现问题,对此自己事先积极进行了预防,并在此基础上特别提醒学生解决此类问题是要认真审题,确实发现图象中所反映的究竟是哪两个变量之间的关系,以免问题解决时出现错误。事实上这一点在上一个环节中已经进行了特别的强调。另外,将生活语言问题转化为数学函数图象语言问题也是本环节着力培养训练的内容,因为这是学生解决此类问题的一个突破点。由于学生在口头回答时会很容易,但用数学语言符号书写时会出现问题,因此,自己利用大屏幕特别出示了问题解答时规范的书面数学语言,帮助学生养成规范的数学学习习惯,明确数学学习的严谨性。在例题解决后,为了使学生更好地对此类问题进行合理的分析与解答,避免因审题不清而出现错误,自己还特别地提出了这样一个问题:“试一试:如果其它条件不变,我们想反映该摩托车消耗油量y(升)与行驶路程x(千米)之间关系的图象,在该图中应该是怎样的?”然后组织学生进行讨论解答,自己利用大屏幕给出正确答案。利用这种对比性教学,有利于加强学生思维能力的训练。
4、探究发现:
本环节主要是引导学生发现“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”。为了突破这一难点,自己在本环节中先出示了这样一个问题:观察图象回答问题
(1)当y=0时,x=( )
(2)直线对应的函数表达式是( )
由于在前面几节课中的学习,学生完全可以解决上面问题。在此基础上,组织学生解方程:y=0.5x+1。进而提出问题,你发现什么了?用自己的语言进行归纳。自己利用大屏幕给出规范化的结论:
①、从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解。
②、从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解。
这种教学方法,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生们在数学学习活动中如何探索并形成数学结论的方法。有利于学生主动探索意识的培养。
5、问题解决:
本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,然后进行了一道发散思维问题的训练,即让学生结合“龟兔赛跑”的故事在同一坐标系中大致画出龟兔赛跑的图象。主要是为了训练学生发散思维的意识和能力。同时考虑到本节课内容在中考中的重要性,自己特别地将2004年宁安市中考题进行了引导练习。
6、收获体会:
本环节主要是课堂小结的过程,引导学生从知识、学习过程(学习的经历、体验)、情感态度等方面进行归纳,主要由学生之间互相合作补充发言完成,对于学生忽略的地方自己进行引导性弥补。在此基础上布置本节课的作业,作业分为两部分,一方面布置一次函数图象应用的作业;一部分布置一次函数与一元一次方程关系的作业。
五、预期效果:
|
|