绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

小学生五年级奥数名师专题讲座辅导WORD免费下载

[复制链接]
22#
 楼主| 发表于 2012-11-5 01:05:27 | 只看该作者

  1+1=2,2+3=5,3+5=8, 5+8=13,…
  这串数的规律是,从第三项起,每一个数等于前两个数的和。根据奇偶数的加法性质,可以得出这串数的奇偶性:
  奇,奇,偶,奇,奇,偶,奇,奇,偶,……
容易看出,这串数是按“奇,奇,偶”每三个数为一组周期变化的。 1000÷3=333……1,这串数的前1000个数有333组又1个数,每组的三个数中有1个偶数,并且是第3个数,所以这串数到第1000个数时,共有333个偶数。
三、拓展提升
1.在11,111,1111,11111,…这些数中,任何一个数都不会是某一个自然数的平方。这样说对吗?
2.一本书由17个故事组成,各个故事的篇幅分别是1,2,3,…,17页。这17个故事有各种编排法,但无论怎样编排,故事正文都从第1页开始,以后每一个故事都从新一页码开始。如果要求安排在奇数页码开始的故事尽量少,那么最少有多少个故事是从奇数页码开始的?
3.桌子上放着6只杯子,其中3只杯口朝上,3只杯口朝下。如果每次翻转5只杯子,那么至少翻转多少次,才能使6只杯子都杯口朝上?
4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行数的最左边的几个数是这样的:0,1,3,8,21,…问:最右边的一个数是奇数还是偶数?
5.学校组织运动会,小明领回自己的运动员号码后,小玲问他:“今天发放的运动员号码加起来是奇数还是偶数?”小明说:“除开我的号码,把今天发的其它号码加起来,再减去我的号码,恰好是100。”今天发放的运动员号码加起来,到底是奇数还是偶数?
6.在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99。问:原来写的三个整数能否是1,3,5?

答案
 1.对。提示:因为平方数能被4整除或除以4余1,而形如111…11的数除以4的余数与11除以4的余数相同,余3,所以不是平方数。
  2.5个。提示:与例4类似分析可知,先排9个奇数页的故事,其中有5个从奇数页开始,再排8个偶数页的故事,都是从偶数页码开始。
  3.3次。提示:见下表。
  
  4.偶数。
  提示:这行数的前面若干个数是:0,1,3,8,21,55,144,377,987,2584,…
  这些数的奇偶状况是:偶,奇,奇,偶,奇,奇,偶,奇,奇,……
  从前到后按一偶二奇的顺序循环出现。70÷3=23……1,第70个数是第24组数的第一个数,是偶数。
  5.偶数。
  提示:号码总和等于100加上小明号码的2倍。
  6.不能。
提示:如果原来写的是1,3,5,那么从第一次改变后,三个数永远是两个奇数一个偶数。

(十三) 周期性问题

在日常生活中,有一些现象按照一定的规律不断重复出现。如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解决。
    在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。

一、例题与方法指导
        例1.        某年的二月份有五个星期日,这年六月一日是星期_____.
思路导航:
因为7 4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了
          31+30+31+1=93(天).
因为937=13…2,所以这年6月1日是星期二.

例2.        1989年12月5日是星期二,那么再过十年的12月5日是星期_____.
思路导航:
依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有
365 10+2=3652(天)
因为(3652+1) 7=521…6,所以再过十年的12月5日是星期日.
[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.

例3.        按下面摆法摆80个三角形,有_____个白色的.
                                    
                                      ……
思路导航:
从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.
因为80 6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13 3=39(个).

        例4.        节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.
思路导航:
依题意知,电灯的安装排列如下:
白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.
由73 4=18…1,可知第73盏灯是白灯.

例5.         时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.
思路导航:
分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991 24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.
[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.
回复

使用道具 举报

23#
 楼主| 发表于 2012-11-5 01:05:32 | 只看该作者

二、巩固训练
1. 把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.
第一列        第二列        第三列        第四列        第五列
1        2        3        4        5
        9        8        7        6
10        11        12        13        14
        18        17        16        15
…        …        …        …        …
        …        …        …        …
2. 把分数 化成小数后,小数点第110位上的数字是_____.
3. 循环小数 与 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.
4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,
……共有1991个数.
   (1)其中共有_____个1,_____个9_____个4;
   (2)这些数字的总和是_____.
10. 7 7 7 …… 7所得积末位数是_____.

             50个


答案:
6.  3
仔细观察题中数表.
             1  2  3  4  5       (奇数排)
    第一组
9        8  7  6       (偶数排)
             10  11  12  13  14  (奇数排)
    第二组
                 18  17  16  15  (偶数排)
             19  20  21  22  23  (奇数排)
    第三组  
                 27  26  25  24  (偶数排)

可发现规律如下:
(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;
(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.
(3)10 9=1…1,10在1+1组,第1列
   19 9=2…1,19在2+1组,第1列
因为1992 9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.
7.  7
=0.57142857……
它的循环周期是6,具体地六个数依次是
5,7,1,4,2,8
110 6=18…2
因为余2,第110个数字是上面列出的六个数中的第2个,就是7.
8.  35
因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.
9.  853,570,568,8255.
不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为19917=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3284+1=853(个),9的个数是2284+2=570(个),4的个数是2284=568(个).这些数字的总和为
1853+9570+4568=8255.


三、拓展提升
1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8 9=72,在9后面写2,9 2=18,在2后面写8,……得到一串数字:
1  9  8  9  2  8  6……
这串数字从1开始往右数,第1989个数字是什么?
2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?
3. 设n=2 2 2 …… 2,那么n的末两位数字是多少?        

            1991个
4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?


答案:11.  依照题述规则多写几个数字:
1989286884286884……
可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4) 6=330…5,所以所求数字是8.
12.  1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990 10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.
13.  n是1991个2的连乘积,可记为n=21991,首先从2的较低次幂入手寻找规律,列表如下:

n        n的十位数字        n的个位数字        n        n的十位数字        n的个位数字
21        0        2        212        9        6
22        0        4        213        9        2
23        0        8        214        8        4
24        1        6        215        6        8
25        3        2        216        3        6
26        6        4        217        7        2
27        2        8        218        4        4
28        5        6        219        8        8
29        1        2        220        7        6
210        2        4        221        5        2
211        4        8        222        0        4

观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990 20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n的末两位数字是48.
14.  因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.
6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.
回复

使用道具 举报

24#
 楼主| 发表于 2012-11-5 01:05:37 | 只看该作者


由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5 5-6 4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:
2 [(100-10) 30]+1
=2 3+1
=7(段)
[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.


(十四) 植树问题

只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做“植树问题”。而植树问题,一般又可分为封闭型的和不封闭型的(开放型的)。
封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:
1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:
但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:
如果两端都不植树,那么棵数比一端植树还要再少一棵,其路长、间距、棵数的关系就是:
2、封闭型的情况(多为圆周形),如下图所示,那么:


植树问题的三要素:
总路线长、间距(棵距)长、棵数.
只要知道这三个要素中任意两个要素,就可以求出第三个.
植树问题的分类:
  ⑴直线型的植树问题 ⑵封闭型植树问题 ⑶特殊类型的植树问题

一、例题与方法指导

例1 有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵?
思路导航:
每隔5米栽一棵垂柳,即以两棵垂柳之间的距离5米为一段。公路的全长1000米,分成5米一段,那么里包含有1000÷5=200段。由于公路的两端都要求种树,所以要种植的棵数比分成的段数多1,所以,可种植垂柳200+1=201棵。

例2 某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?
思路导航:
在圆周上植树时,由于可栽的株数等于分成的段数,所以,可栽柳树=1350÷9=150株;由于两株柳树之间等距离地栽株夹枝桃,而间隔数(段数)为150,所以栽夹枝桃的株数=2×150=300株;每隔9米种柳树一株,在两株夹枝桃之间等距地栽2株夹枝桃,这就变成两端都不植树的情形,即2株等距离栽在9米的直线上,不含两端,所以,每两株之间的距离=9÷(2+1)=3(米)。
例3 一条街上,一旁每隔8米有一个广告牌,从头到尾有16个广告牌,现在要进行调整,变成每12米有一个广告牌。那么除了两端的广告牌外,中间还有几个牌不需要移动?
思路导航:
16个广告牌,每相邻的两个广告牌的间隔为8米,则共有16-1=15 个间隔,这条街的总长度为8×15=120(米);现在要调整为每12米一个广告牌,那么不移动的牌离端点的距离一定既是8的倍数,同时也是12的倍数;8×3=12×2=24,也就是说,每24米及其倍数处的广告牌可以不需要移动;120÷24=5,即段数为5个,但要扣除两端的2个,所以,中间不需要移动的有5-1=4个。
事实上,所谓植树问题只是我们对这一种类型问题的总称,并不单指植树问题。例如,与之类似的还有爬楼(梯)问题、队列问题、敲钟问题、锯木头问题的等。所以,植树问题又称上楼梯问题。

二、巩固训练

1 某人要到一座高层楼的第8层办事,不巧停电,电梯停开。如果他从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?
思路导航::
要求还需要多少秒才能到达,必须先求出上一层楼梯需要几秒,并且知道从4楼走到8楼共需要走几层楼梯。从1层走到4层,事实所爬的层数只是4-1=3层,所以上一层楼梯需要的时间是48÷(4-1)=16(秒);又,从4楼走到8楼共需走8-4=4层楼梯,所以还需要的时间是16×4=64秒。
2 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台需要多少分钟?
思路导航::
125人参加运动会入场式,每5人一行,共排了125÷5=25行,那么这里25行就相当于直线上的25棵树,所以,这列队的长度为两端植树的路的长度,全长是2×(25-1)=48米;这列队伍通过主席台,所走的总路程应该是队伍长度与主席台长度之和,即:48+42=90米,所以,他们通过主席台的时间是90÷45=2分钟。
3 下图是五个大小相同的铁环连在一起的图形,它的长度是多少?十个这样的铁环连在一起有多长?
思路导航::
根据上图所示,要求出它的总长度是多少,关键是求出重叠部分需要扣除的长度。每一个铁环的厚度为6毫米,注意到重叠部分,后面连上的铁环将有2个厚度是重叠的,也就是说实际每加一个铁环所延伸的长度为4厘米-2×6毫米=40毫米-12毫米=28毫米; 根据我们前面所讲的植树问题,五个铁环连在一起,“环扣”数为5-1=4(个),所以,五个大小相同的铁环连在一起时,总长度为40+4×28=152(毫米)。同理,十个铁环连在一起的长度为40+ (10-1) ×28=292(毫米)。
4 一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?
思路导航::
要求需要的时间,我们就要弄清楚共需锯几次。24米长的木条里面包含有24÷3=8个3米,8段有8-1=7个间隔,即木工只需锯7次,那么,每次5分钟,一共需要用时5×7=35分钟。


三、能力提升
1 一个街心花园如下图所示,它由四个大小相等的等边三角形组成。已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花。问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?

思路导航::
由题意可知,大三角形的边长是小三角形边长的2倍,因为每个小三角形的边上均匀栽9株, 而大三角形的每条边由两个小三角形的边重叠一个顶点而成,所以,大三角形的每条边上栽的棵数为:9×2-1=17棵;又大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以,大三角形三条边上共栽花:(17-1)×3=48棵;再看图中间的阴影小三角形,每边所栽花的棵数就是一个两端不种树的植树问题,所以小三角形每条边上栽花的棵数为9-2=7棵,中间共栽花:7×3=21棵,所以,整个花坛共栽花:48+21=69棵。

2 时钟4点敲4下,用12秒敲完。那么6点钟敲6下,几秒钟敲完?

思路导航::
4点钟敲4下,共12秒,而4下中间有3个间隔,说明每一个间隔的秒数为12÷(4-1)=4秒;12点敲12下,中间有11个间隔,所以一共需要4×(12-1)=44秒敲完。

3 铁路旁每隔50米有一根电线杆,某旅客为了计算火车速度,测量出从经过第1根电线杆起到经过第37根电线杆止共用了2分。火车的速度是多少?
回复

使用道具 举报

25#
 楼主| 发表于 2012-11-5 01:05:43 | 只看该作者

思路导航::
从第1根电线杆起到第37根电线杆,共有37-1=36个间隔;每隔50米有一根电线杆,也就是说间隔为50米;那么,行使的总路程为:50×(37-1)=1800米;2分钟=2×60秒=120秒,共行1800米,所以,火车速度为:1800÷120=15米/秒。

(十五) 有趣的树阵图

把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.

一、例题与方法指导
例1.        在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。

思路导航:
由上一讲例4知中间方格中的数为7。再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。

  因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。考虑到5,7,9已填好,所以x只能取4,6,8或10。经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。这两个解实际上一样,只是方向不同而已。
 
例2.        将九个数填入下图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有

证明:         
思路导航:
设中心数为d。由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。

  根据第一行和第三列都可以求出上图中★处的数由此得到
  3d-c-(2d-b)=3d-a-(2d-c),
  3d-c-2d+b=3d-a-2d+c,
  d——c+b=d——a+c,
  2c=a+b,
  a+b
  c=2。
  值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。
例3.        在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。

思路导航:
由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。其它数依次可填(见右下图)。

例4.        在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。

思路导航:
由例2知,右下角的数为

  (8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。由此可得如图的填法。

二、巩固训练
  1. 将1~6分别填在图中,使每条边上的三个○内的数的和相等.
                  




2. 把1~8个数分别填入○中,使每条边上三个数的和相等.






3. 把1~9个数分别填入○中,使每条边上四个数的和相等.






4. 把1~10填入图中,使五条边上三个○内的数的和相等.






    5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-21 17:44

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表