绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 8697|回复: 1
打印 上一主题 下一主题

中考数学复习教案二次函数教学设计

[复制链接]
跳转到指定楼层
楼主
发表于 2012-10-2 10:23:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
〖大纲要求〗

1. 理解二次函数的概念;

2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;

3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;

4. 会用待定系数法求二次函数的解析式;

5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

内容

(1)二次函数及其图象

如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。

二次函数的图象是抛物线,可用描点法画出二次函数的图象。

(2)抛物线的顶点、对称轴和开口方向

抛物线y=ax2+bx+c(a≠0)的顶点是 ,对称轴是 ,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.

〖考查重点与常见题型〗

1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,

则m的值是

2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:

如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数

y=kx2+bx-1的图像大致是( )

y y y y



1 1

0 x o-1 x 0 x 0 -1 x

A B C D

3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。

4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:

已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.

5.考查代数与几何的综合能力,常见的作为专项压轴题。

习题1:

一、填空题:(每小题3分,共30分)

1、已知A(3,6)在第一象限,则点B(3,-6)在第 象限

2、对于y=-,当x>0时,y随x的增大而

3、二次函数y=x2+x-5取最小值是,自变量x的值是

4、抛物线y=(x-1)2-7的对称轴是直线x=

5、直线y=-5x-8在y轴上的截距是

6、函数y=中,自变量x的取值范围是

7、若函数y=(m+1)xm2+3m+1是反比例函数,则m的值为

8、在公式=b中,如果b是已知数,则a=

9、已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是

10、 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是

二、选择题:(每题3分,共30分)

11、函数y=中,自变量x的取值范围 ( )

(A)x>5 (B)x<5 (C)x≤5 (D)x≥5

12、抛物线y=(x+3)2-2的顶点在 ( )

(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限

13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为 ( )

(A)0 (B)1 (C)2 (D)3

14、下列各图中能表示函数和在同一坐标系中的图象大致是( )


(A) (B) (C) (D)

15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为( )

(A)(-3,5) (B)(3,5) (C)(-3,-5) (D)(3,-5)

16.下列抛物线,对称轴是直线x=的是( )

(A) y=x2(B)y=x2+2x(C)y=x2+x+2(D)y=x2-x-2

17.函数y=中,x的取值范围是( )

(A)x≠0 (B)x> (C)x≠ (D)x<

18.已知A(0,0),B(3,2)两点,则经过A、B两点的直线是( )

(A)y=x (B)y=x (C)y=3x (D)y=x+1

19.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在( )

(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )

(A)2米 (B)3米 (C)4米 (D)5米

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2012-10-2 10:23:22 | 只看该作者
三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)

21.已知:直线y=x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。

22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=,

(1) 求这条抛物线的解析式;

(2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。

23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。

(1) 求这根金属棒长度l与温度t的函数关系式;

(2) 当温度为100℃时,求这根金属棒的长度;

(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。

24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22

(1) 求S关于m的解析式;并求m的取值范围;

(2) 当函数值s=7时,求x13+8x2的值;

25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。

26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;

(2) 当x为何值时,S的数值是x的4倍。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-29 18:03

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表