要引导学生回顾操作过程,建构数学方法。比如,上面《9加几》的教例中,在指导学生动手操作后,就要及时组织学生回顾、交流操作过程,让学生通过“在头脑里摆学具”,获得完整的操作过程的表象。接着,结合算式引导学生利用表象思考9+4可以怎样算,从而使学生明白:为了先凑成十,就把4分成1和3,先算9+1=10,再算10+3=13,并在交流、对话中完成计算过程:
然后告诉学生:这种算法是将4分成1和3,先把9和1凑成10,再加剩下的3,这样算就会很方便,这样的方法就是“凑十法”。帮助学生根据动作过程抽象并认识“凑十法”。
要引导学生回顾操作过程,形成解题思路。比如,二年级教学《求一个数的几倍是多少的实际问题》,例题是:“杨树有5棵,柳树的棵树是杨树的3倍,柳树有多少棵?”先启发学生用小棒摆一摆,再追问学生“你是怎样摆柳树的棵树的?为什么这样摆?”帮助学生交流摆学具的过程和想法,理解求柳树有多少棵就是求3个5棵是多少,将新问题和以前用乘法计算的实际问题建立联系,明确求一个数的几倍是多少的实际问题的解题思路和方法。
要引导学生反思操作过程,提升活动经验。比如,一年级教学《认识图形》时,让学生折一折、剪一剪、拼一拼:
通过折、剪、拼把长方形转化成平行四边形。在操作活动结束后,可以采用问题跟进的方式引导学生反思操作过程:“刚才我们都是把什么图形变成了什么图形?”“每次是怎样变的?折一折后剪下来的都是什么图形?”“你能把现在的平行四边形变回原来的长方形吗?”通过回顾,抓住原来是什么图形、变成了什么图形、怎样变化的这三点进行归纳、整理,这不仅可以进一步强化不同图形形状的表象,而且也沟通了不同图形之间的联系,渗透事物运动变化的思想。另一方面,把长方形折、剪、拼成平行四边形,把两个完全相同的三角形拼成一个平行四边形,是以后探索平行四边形、三角形面积计算公式时的操作活动,回顾 “怎样做的”就可以为以后的学习积累基本的活动经验。
动手操作是数学学习活动的重要组成部分,不能成为教学的点缀而流于形式。教师在教学中要精心组织,关注教学的指导策略,让动手操作真正成为学生学习数学的桥梁,更好地实现动手操作的教育价值。