绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 3993|回复: 1
打印 上一主题 下一主题

最新北师大版七年级数学下册4.4 用尺规作三角形教学设计及反思word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-4-8 12:15:53 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
           此套北师大版七年级数学下册同步教学设计及反思绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处 部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
4.4 用尺规作三角形

1.已知两边及其夹角会作三角形;(重点,难点)
2.已知两角及其夹边会作三角形.(重点,难点)
3.已知三边会作三角形.(重点,难点)              
一、情境导入
小明在一个工程施工图上看到一个三角形,他想用直尺和圆规画一个与这个三角形全等的三角形,应当怎样画?
二、合作探究
探究点:用尺规作三角形
【类型一】 已知两边及其夹角作三角形
  如图,已知∠α和线段m,n.求作△ABC,使∠B=∠α,BA=n,BC=m.
解:作法:1.作∠MBN=α;
2.在射线BN,BM上分别截取BC=m,BA=n;
3.连接AC,则△ABC就是所求作的三角形.
方法总结:已知两边及其夹角作三角形的理论依据是判定三角形全等的“SAS”,作图时可先作一个角等于已知角,再在角的两边分别截取已知线段长即可.  
【类型二】 已知两角及其夹边作三角形
  已知∠α,∠β,线段c.求作△ABC,使得∠ABC=∠α,∠ACB=∠β,BC=c.
解:作法:1.作线段BC=c;
2.在BC的同旁,作∠DBC=∠α,作∠ECB=∠β,DB与EC交于点A.则△ABC就是所求作的三角形.
方法总结:已知两角及其夹边作三角形的理论依据是判定三角形全等的“ASA”,作图时可先作一条边等于已知边,再在这条边的同侧,以边的两个端点为顶点作两个角分别等于已知角即可.
【类型三】 已知三边作三角形
  已知三条线段a、b、c,用尺规作出△ABC,使BC=a,AC=b、AB=c.
解:作法:1.作线段BC=a;
2.以点C为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧相交于点A;
3.连接AC和AB,则△ABC即为所求作的三角形,如图所示.
方法总结:已知三角形三边的长,根据全等三角形的判定“SSS”,知三角形的形状和大小也就确定了.作三角形相当于确定三角形三个顶点的位置.因此可先确定三角形的一条边(即两个顶点),再分别以这条边的两个端点为圆心,以已知线段长为半径画弧,两弧的交点即为另一个顶点.
三、板书设计
1.已知两边及其夹角作三角形
2.已知两角及其夹边作三角形
3.已知三边作三角形

    本节课学习了有关三角形的作图,主要包括两种基本作图:作一条线段等于已知线段,作一个角等于已知角.作图时,鼓励学生一边作图,一边用几何语言叙述作法,培养学生的动手能力、语言表达能力
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-4-8 12:16:18 | 只看该作者
下载链接 4.4 用尺规作三角形.rar (341.65 KB, 下载次数: 451)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-12-23 02:11

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表