人们往往认为数学教学仅仅是公式公理的解说与运用, 其实不然, 数学课堂也有其自身特的魅力, 以下是我平时教学中的一点经验体会。
一、明确数学思想, 构建数学思维
随着教育对学生综合能力要求的提升以及各个学科间的知识渗透更加深入和普遍, 学习数学最重要的是 要学 会数 学 的 思想, 用数学的眼光去看待世界。对于教师来说, 他不仅要能“做”, 而且需要教会学生去“做”, 这就要求教师不仅有扎实的专业知识和能力, 而且更应该有对数学学科的整体理解从而构建学生良好的数学思维。
二、尊重学生的思想, 理解个体差异
以往教育观点老是忽视学生的认知情感,把学生当作承受知识的容器, 不断增加新知识,同时又要巩固旧知识, 导致新旧积压, 新的学不好, 旧的学不扎实。同时学生之间的个体差异也是显而易见的, 同样的一块地里的庄稼也有高低之分, 学生也是如此, 作为教师, 不仅要善于播种施肥, 更重要的是要理解学生, 给每个学生充分的发展空间和发展的动力, 不能顾此失彼,这才是真正的以人为本。
三、应用心理战术, 从教入手
所谓从教入手, 最重要的就是课堂导入, 因为导入新课不仅是新的教学活动的开始, 也是对旧的教学活动的总结和概括, 好的导入往往能激发学生的学习兴趣, 使学生兴趣盎然, 对新知识的渴望也更高, 教学活动当然就进行的更加顺畅。
1.矛盾激趣
矛盾即问题, 思维始于疑问, 在教学中设计一个学生不易回答的悬念或者有趣的故事, 可以激发学生强烈的求知欲, 起到启示诱导的作用。在教授等差数列求和公式时, 一位教师讲了一个小故事: 德国的“数学王子”高斯, 读小学时, 老师出了一道算术题 1+2+3+?+100=? , 老师刚读完题目, 高斯就在他的小黑板上写出了答案 5050, 而其他同学还在一个数一个数挨个相加呢。那么, 高斯怎么会算的这么快呢?正在学生百思不得其解时, 老师引出了要讲的等差数列求和方法的内容。
2.重点、难点设疑
教材中有些内容既枯燥乏味, 又艰涩难懂。如数列的极限概念及无穷等比数列各项和的概念既抽象, 又是难点。为了更好地讲解本课内容, 一位教师在教学时插入了一段“关于分牛传说析疑”的故事。传说古代印度有一位老人, 临终前留下遗嘱, 要把 19 头牛分给三个儿子。老大分总数的 1/2, 老二分总数的 1/4, 老三分总数的 1/5。按印度的教规, 牛被视为神灵, 不能宰杀, 只能整头分, 先人的遗嘱更必须无条件遵从。老人死后, 三兄弟为分牛一事而绞尽脑汁,却计无所出, 最后决定诉诸官府。官府一筹莫展, 便以“清官难断家务事”为由, 一推了之。邻村智叟知道了, 说“:这好办!我有一头牛借给你们。这样, 总共就有 20
头牛。老大分 1/2 可得 10头; 老二分 1/4 可得 5 头; 老三分 1/5 可得 4 头你等三人共分去 19 头牛, 剩下的一头牛再还我!”真是妙极了!不过, 后来人们在钦佩之余总带有一丝疑问。老大似乎只该分 9.5 头, 最后他怎么竟得了 10 头呢?这样, 不仅提高了学生的探究热情, 也给教师的导入新课创造了良好的时机, 无形之中将学生带入自己设计的教学情境之中。另外教学中也要重视教学的延续性, 一堂课的好坏不仅仅体现再前奏合过程, 结尾也同样重要, 也就是我们所谓的升华阶段。
曲尽而意存, 课完而回味无穷。在一堂课结束时, 根据知识的系统性, 承上启下地提出新的问题, 一方面可以将新旧知识有机地联系起来,同时又可以激发起学生新的求知欲望, 为下一节课的教学作好充分的心理准备。我国章回体小说就常用这种妙趣夺人的心理设计, 每当故事发展到高潮, 事物的矛盾冲突激化到顶点的时候, 读者急切地盼望故事的结局, 而作者却以“欲知后事如何, 且听下回分解”结尾, 迫使读者不得不继续读下去!课堂教学如此, 则二者必有异曲同工之妙。
课堂教学作为一门无形的艺术, 有其自身的发挥空间, 如何把握住学生的心理与知识内容的特点, 才是万变不离其“宗”, 只要教师用心, 科学地将教育教学规律应用于现实的教学之中, 让学生积极地投入到课堂学习里, 感受知识与人文的魅力, 课堂教学必将焕发迷人的色彩。
四、理性与感性叠加, 完善学生的情知模式
言传身教不只是传递知识和技能, 其实更重要的是一种人文的关怀, 情感的共鸣, 传递者站在经验的基础上使学习者感受以往失败的挫折感, 同时也有
成功的成就感, 这样的教育才更加有真实性, 在不知不觉中让学生进入到理想的情景中, 品尝人生的酸甜苦辣, 再失败与成功中崛起, 再理性与感性中升华。
不管是数学教学还是其他学科, 我们的教学都不能仅仅停留在已有的基础之上, 认识教育的新规律并适时地将其应用于实际的教学中, 这样我们的教学才更有成效, 教育的投入才能真正变为学生的成就, 古人云, 学而时习之,做为新时期的教育工作者理当为了教学而学习新的理论知识, 当然也要时“思”之。 |