绿色圃中小学教育网
标题:
人教版七年级上册数学公开课优秀教案《有理数大小的比较》教学设计与反思
[打印本页]
作者:
ljalang
时间:
2019-1-1 13:00
标题:
人教版七年级上册数学公开课优秀教案《有理数大小的比较》教学设计与反思
人教版七年级上册数学公开课优秀教案《有理数大小的比较》教学设计与反思
第2课时 有理数大小的比较
1.掌握有理数大小的比较法则;(重点)
2.会比较有理数的大小,并能正确地使用“>”或“<”号连接;(重点)
3.能初步进行有理数大小比较的推理和书写.(难点)
一、情境导入
某一天我国5个城市的最低气温如图所示:
(1)从刚才的图片中你获得了哪些信息?
(2)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”).
广州______上海;北京______上海;北京______哈尔滨;武汉______哈尔滨;武汉______广州.
二、合作探究
探究点一:借助数轴比较有理数的大小
【类型一】 借助数轴直接比较数的大小
画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.
解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.
解:如图所示:
因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.
方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.
【类型二】 借助数轴间接比较数的大小
已知有理数a、b在数轴上的位置如图所示.比较a、b、-a、-b的大小,正确的是( )
A.a<b<-a<-b B.b<-a<-b<a
C.-a<a<b<-b D.-b<a<-a<b
解析:由图可得a<0<b,且|a|<|b|,则有:-b<a<-a<b.故选D.
方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小.
探究点二:运用法则比较有理数的大小
【类型一】 直接比较大小
比较下列各对数的大小:
(1)3和-5;
(2)-3和-5;
(3)-2.5和-|-2.25|;
(4)-35和-34.
解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小.
解:(1)因为正数大于负数,所以3>-5;
(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5;
(3)因为|-2.5|=2.5,-|-2.25|=-2.25,|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|;
(4)因为|-35|=35,|-34|=34,35<34,所以-34<-35.
方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.
【类型二】 有理数的最值问题
设a是绝对值最小的数,b是最大的负整数,c是最小的正整数,则a、b、c三数分别为( )
A.0,-1,1 B.1,0,-1
C.1,-1,0 D.0,1,-1
解析:因为a是绝对值最小的数,所以a=0,因为b是最大的负整数,所以b=-1,因为c是最小的正整数,所以c=1,综上所述,a、b、c分别为0、-1、1.故选A.
方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.
三、板书设计
1.借助数轴比较有理数的大小:
在数轴上右边的数总比左边的数大
2.运用法则比较有理数的大小:
正数与0的大小比较
负数与0的大小比较
正数与负数的大小比较
负数与负数的大小比较
本节课的教学目标是让学生掌握比较有理数大小的两种方法,教学设计主要是从基础出发,从简单到复杂,层层递进,让学生更加深刻地认识和掌握有理数大小比较的方法.通过本节的教学,大部分学生能够理解法则的内容,但真正掌握有理数的大小比较的方法还需要一定量的练习进行巩固.同时在教学中还要充分发挥学生的主体意识,让学生逐步解决所设计的问题,并能举一反三.
作者:
ljalang
时间:
2019-1-1 13:00
1.2.4 绝对值
第2课时 有理数大小的比较
【教学目标】
(一)知识技能
1.使学生进一步巩固绝对值的概念,能说出有理数大小的比较法则
2 . 能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3. 能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系
(二)过程方法
经历由实际问题总结归纳出应用绝对值概念比较有理数大小, 特别是比较两个负数的大小的过程,渗透数形结合思想。
(三)情感态度
通过学生自己动手操作,观察、思考,使学 生亲身体验探索的乐趣,培养学生合作交流能力和观察、归纳、用 数学语言表达数学规律的能力。同时培养学生逻辑思维能力和推理论证能力。
教学重点
运用法则借助数轴比较两个有理数的大小。
教学难点
利用绝对值概念比较两个负分数的大小。
【复习引入】
1.复习绝对值的几何意义和代数意义:
一个数a的绝对值就是数轴上表示数a的点与原点的距离, 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2.(多媒体显示)某一天我们5个城市的最低气温分别是
画一画:(1)把上述5个 城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
3.温度的高低与相应的数在数轴上的位置有什么关系?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右 边的数总比左边的数大。教 师趁机追问,原点左边的数也有这样的规律吗?)由小组讨论后,教师归纳得出结论:
【教学过程】
1.在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接。
2.发现、总结:
做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-1.5和-1
③-25 和-14 ④-1. 412和-1.411
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由 ①、②从中你发现了什么?
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
3. 两个负数比较大小时的一般步骤:
例如,比较两个负数 和 的大小:
① 先分别求出它们的绝对值: = = , = =
② 比较绝对值的大小:
∵ ∴
③ 比较负数大小:
4.归纳:
我们 可以得到有理数大小比较的一般法则:
(1) 负数小于0,0小于正数,负数小于正数;
(2) 两个正数,应用已有的方法比较;
(3) 两个负数,绝对值大的反而小.
5.例题:
例2:比较下列各对数的大小:
①-1与-0.01; ② 与0; ③-0.3与 ; ④ 与 。
解:(1)这是两个负数比较大小,
∵|―1|=1, |―0.01|=0.01, 且 1>0.01, ∴―1< ―0.01。
(2) 化简:―|―2|=―2,因为负数小于0,所以―|―2| < 0。
(3) 这是两个 负数比较大小,
∵|―0.3|=0.3, ,且 0.3 < , ∴ 。
(4) 分别化简两数,得:
∵正 数大于负数, ∴
说明:①要求学生严格按此格式书写,训练学生逻辑推理能力;
②注意符号“∵”、“∴”的写法、读法和用法;
③对于两个负数的大小比较可以不必再借助于数轴而直接进行;
④异分母分数比较大小时要通分将分母化为相同。
例3:用“>”连接下列个数:
2.6,―4.5, ,0,―2
分析:多个有理数比较大小时,应根据“正 数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比,负数和负数比。
提醒学生,用“>”连接两个以上数时,大数在前,小数在后,不能出现5>0<4的式子.
解答:2.6> >0>―2 >―4.5。
6.想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法:一种是法则,另一种是利用数轴。 当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
【课堂作业】
1.(1)有没有最大的有理数,有没有 最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)大于-1.5且小于4.2的整数有_____ 个,它们分别是____。
2.比较大小(用“>”,“<”或“=”填空)
(1)0.1 -10, (2)0 -5, (3)| | |- |,
(4)|-3 | -3 , (5)-|-3| -(+3 ), (6)- -|- |
(7)- -0.273
3.比较下列各对数的大小
(1)-5和-6 (2)- 与-3.14 (3)|- |与0
(4)-[-(- )]与-|- | (5) 与 (6) 和
4.将有理数 按从小到大的顺序排列,并用“<” 号连接起来。
参考答案:
1.(1) 没有最大的有理数,没有最小的有理数,因为数轴是一条直线,向两端无限延伸。
(2)有绝对值最小的有理数,是0
(3)-1,0,1,2,3,4.
2.(1)> (2)> (3)< (4)> (5)= (6)> (7)>
3. 解:(1)∵|-5|=5,|-6|=6,又5<6 ∴-5<-6。
(2)∵|- |= ≈3.143,|-3.14|=3.14,又3.143>3. 14, ∴- <-3.14。
(3)∵|- |= ∴ |- |>0
(4)∵-[-(- )]=- -|- |=-
又|- |= = |- |= <
∴-[ -( - )]>-|- |
(5) , ,而 ,
(6) 而
4.解:
【教学反思】
在传授知识的同 时,要重视学科基本思想方法的教学。为了使学生掌握必要的数学思想和方法,需要在教学中结合内容 逐步渗透,而不能脱离内容形式地传授。
本课中,我们有意识地突出“分类讨论”、“∵,∴”这些数学思想方法,以期使学生对此有一个初步的认识与了解。
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2