绿色圃中小学教育网

标题: 青岛版六年级上册《稍复杂的分数乘法问题》教学实录 [打印本页]

作者: 网站工作室    时间: 2010-9-13 22:52
标题: 青岛版六年级上册《稍复杂的分数乘法问题》教学实录
教学内容:课程标准实验教科书(青岛版)六年级上册第79~80页。

教学目标:

1. 通过学习,理解并掌握稍复杂的分数乘法问题的数量关系、解题思路,并能正确解答。

2.通过独立思考、交流合作,经历问题解决的过程,探求解决问题的方法策略,从而培养理解、分析和解决问题的能力。

3.在解决问题的过程中渗透对应的数学思想。

教学重点:稍复杂的乘法问题的结构特点及解答方法

教学难点:a×(1-c/b)这一解答方法的掌握

教学过程:

一、课前欣赏图片,师生交流。

师:上课前先请同学们欣赏一组美丽的图片。

师:同学们看到的这些是我国世界遗产的一部分,有没有看到你熟悉的地方?我们泰安也有一处世界遗产,谁知道?是的,泰山以其人文杰作与自然景观的完美结合,被列为世界自然文化双遗产,这一节课我们继续解决有关中国世界遗产的数学问题。

(评析:课前展示图片不仅可以进一步了解中国世界遗产,而且可以创设问题情境,激发学生学习探究的兴趣。谈话中重点介绍世界自然文化双遗产—泰山,旨在培养学生热爱家乡的情感。)

二、创设情境,提出问题

1.出示窗1情境图,复习简单分数乘法问题。

师:这是我们上一节课了解到的一条信息,请读一读,根据这些信息,我们可以求什么?

生1:可以求文化遗产、自然遗产、及其他遗产各有多少处?

学生回答后,课件出示

文化遗产有多少处?

自然遗产有多少处?

其他遗产有多少处?

师:这三个问题分别怎样求?

生:求文化遗产有多少处?用30×7/10。求自然遗产有多少处?用30×2/15。求其他遗产有多少处?用30×1/6。

学生回答后,课件出示算式。

文化遗产有多少处?      30×7/10

自然遗产有多少处?      30×2/15

其他遗产有多少处?      30×1/6

师:观察三个算式用什么共同之处?

生1:都是用乘法。

生2:都是用30乘问题对应的几分之几。

师:为什么算式都是用30乘问题对应的几分之几?

生1:因为这三个问题都是求30的几分之几是多少。


作者: 网站工作室    时间: 2010-9-13 22:52
生2:求30的几分之几是多少用乘法。

师:再利用线段图来观察,7/10和问题“文化遗产有多少处”之间是什么关系?

生1:总数的7/10正好是要求的问题。

生2:总数的7/10和要求的问题是对应关系。

师:所以要求问题“文化遗产有多少处”用30直接乘问题对应的7/10就行。

2.出示窗2情境图,创设问题情境,提出本节课要研究的问题。

师:这是我们以前学过的简单的分数乘法问题的结构特点和解答方法,今天我们开始学习解决稍复杂的分数乘法问题。(板书课题)

师:今天的情境图带来的是秦兵马俑的信息,信息比较多,请同学们先自由读一读。

师:再请一位声音响亮的同学把情境图上的信息读给大家听,同学们边听边思考,根据这些信息可以提出哪些数学问题?

生:1号坑还剩多少尊陶俑、陶马没有清理?

师:建议同学们以“根据第几条信息,我提出的问题是什么”句式提问题,可以吗?

生1:1号坑内有6000尊陶俑、陶马,已清理出它的1/6,1号坑还剩多少尊陶俑、陶马没有清理?

生2:1号坑面积最大,比2号坑大5/9。2号坑占地约9000平方米,1号坑占地约多少平方米?

生3:2号坑内的陶俑、陶马尊数比1号坑少3/4,2号坑有多少尊陶俑、陶马?

(评析:新授前的铺垫练习为学生学习新知识铺平道路,顺利地实现正迁移。学生原有认知结构的清晰、稳固程度直接影响着正迁移的实现,而且学生头脑中的旧知痕迹,也会随着时间的消逝而逐渐地衰退,所以在学习新知识之前,抓住新知识在学生原有认知结构中的“生长点”来设计铺垫练习,对本节课的教学很有帮助。另外,利用窗1中的信息来设计练习题,不打破教材中的原有情境串,使铺垫练习与新授学习浑然一体。)

三、合作探究、解决问题

师:这节课我们先来研究第一个问题。

课件出示:1号坑内有6000尊陶俑、陶马,已清理出它的1/6,1号坑还剩多少尊陶俑、陶马没有清理?

师:读题,弄懂说的是什么事,再读题,理解题中的数量关系,边读边想:这道题怎样解答?

师:咱们先在练习本上尝试做一做。

师:请这位同学来说一说你的方法。

生1:我是这样想的,算式是6000-6000×1/6,先用6000×1/6求出已清理出了多少尊陶俑、陶马,再从总数6000里减去已清理的尊数就是没有清理的尊数。

学生说算式和计算过程(第一种),教师板书。

师:你和他的方法一样吗?你也来说说是怎样想的。

生2:先用6000×1/6求出已清理出了多少尊陶俑、陶马,再从总数6000里减去已清理的尊数就是没有清理的尊数。

师:你怎么知道求已清理出了多少尊要用6000×1/6?

生2:题里说“已清理出它的1/6”也就是清理出了总数6000尊的1/6,求已清理出了多少尊,也就是求6000的1/6是多少,所以用6000×1/6。

师:(指板书)用这种方法求还剩多少尊没有清理,应该先求,然后再求?

引导学生梳理这种方法的解题思路。

(评析:有了窗1的知识基础,这种方法学生掌握起来非常容易,所以老师在这种方法的学习上没有浪费太多时间。)

师:想到这种方法同学真多,我们在这种方法上达成了共识。还有不同的方法吗?

生:我是这样想的,算式是 6000×(1-1/6),(1-1/6)先求出没清理的尊数占总尊数的几分之几,再用6000乘几分之几求出没清理的有几尊。

学生口述,教师写算式。

师:听明白了吗?再找一个同学说一说。

生2:(1-1/6)先求出没清理的尊数占总尊数的几分之几,再用6000乘几分之几求出没清理的有几尊。

师:(1-1/6)求的是什么?能再解释解释吗?

生1:(1-1/6)求的是没清理的。

生2:(1-1/6)先求出没清理的有多少尊。

生3:(1-1/6)求的是没清理的尊数占总尊数的几分之几。

师:看的出好多同学对(1-1/6)的意思还不太明白,除此以外,对第二种方法你还有疑问吗?

师:老师还有一个问题:算式中的1-1/6和问题还剩多少尊是什么关系?

学生回答有困难。

(课件展示)

师:你平时做题遇到困难时通常会想到什么方法?
作者: 网站工作室    时间: 2010-9-13 22:52
生1:多读题。

生2:画线段图。

师:画线段图能使抽象的数量关系变得很直观,对解答我们的疑问应该是个好办法,下面就请同学们根据题意画出线段图,看一看1-1/6和问题还剩多少尊之间到底什么关系,1-1/6求的是什么?

学生画线段图,教师展示。

师:让我们来看一看这位同学画的线段图,请你说一说你是怎样画的?

生:我用一条线段来表示总数6000尊,把这条线段平均分6份,其中的1/6用来表示已清理的,这5/6就是没清理的。

师:算式中的1-1/6也就是这指的这5/6,从图上能清楚地看出5/6表示的是什么?

生1:表示的是没清理的占总数的5/6。

生2:表示的是没清理的占总数的几分之几。

师:从线段图上能看出问题“没清理的有多少尊”和1-1/6是什么关系吗?

生:对应关系。

师:(指课件标准线段图)再来整理一下我们的思路,问题和1/6对应吗,所以我们要求出问题对应的是总数的几分之几。也就是求还剩的尊数占总尊数的几分之几,用1-1/6,也就是5/6。当我们知道问题“还剩多少尊”对应的是5/6时,再怎么求问题?也就是求6000的5/6是多少。

师:(指板书)你明白这种方法了吗?这种方法中哪一步比较关键?

生1:我认为1-1/6也就是求没清理的占总数的几分之几很关键。

生2:求问题对应的是总数的几分之几最关键。也就是1-1/6这一步。

(评析:这种方法学生掌握起来较难,但是又很重要,它是后面学习稍复杂的分数除法应用题的基础。由学生对1-1/6的意义理解有困难,到使用画线段图这种解题策略,再到利用线段图帮助理解算式,完全根据学生的需要安排的,体现了顺学而导的思想。)

师:刚才同学们用两种方法解决了今天研究的问题,对比一下,这两种方法在思路上有什么不同?

生:第一种方法是先求已清理了多少尊,再用总数6000尊减去已清理的尊数就是没清理的尊数。第二种方法是先求出没清理的占总数的几分之几,再用总数乘问题对应的几分之几求出没清理的尊数。

(评析:)

四、巩固、拓展、延伸

师:我们掌握了两种不同的方法,下面用我们学到方法去解决更多的问题吧!

1.说一说。

吃了一袋大米的5/7。

运走了一堆煤的2/3。

男生占总人数的5/8。

看了一本书的3/8。

师:看到这些信息,你能联想到哪些其他信息。

生1:看到“吃了一袋大米的5/7”我想到了“还剩这袋大米的2/7”。

生2:看到“运走了一堆煤的2/3”我想到了“还剩这堆煤的1/3”。

生3:看到“男生占总人数的5/8”我想到了“女生占总人数的3/8”。

生4:看到“看了一本书的3/8”我想到了“还剩这本书的5/8没看”。

师:数学联想能力是一种很重要的能力,看到已知信息联想到其他的有用信息越多,你拥有的方法就会越多。

2.做一做

(1)一本书120页,已经看了 2/3,还剩多少页没看。

师:1-2/3求的是什么?也就是问题对应的几分之几。
作者: 网站工作室    时间: 2010-9-13 22:53
(2) 白兔和黑兔共28只,其中白兔占3/7,黑免有多少只?

做在练习本上,共同订正。

3.根据算式补充问题:

学校食堂买来面粉和大米共1000千克,其中大米占7/10,——————?

A. 1000×7/10         大米有多少千克?         

B. 1000-1000×7/10    面粉有多少千克?

C. 1-7/10             面粉占几分之几?

D. 1000×(1-7/10)   面粉有多少千克?

师:哪一个问题属于简单分数乘法问题?哪个问题属于今天解决的稍复杂的分数乘法问题?对比一下,你能说一说,今天解决的这种问题复杂在哪儿呢?

生1:简单乘法问题一步可以解决,稍复杂的需要两步。

生2:简单乘法问题已知问题对应的是总数的几分之几,稍复杂的乘法问题需要先求出问题对应的是总数的几分之几。

生3:我发现不管是简单的还是稍复杂的,都是已知总数。

4、刘老师三天看完一本80页的故事书,第一天看了1/4,第二天1/2,

             ?

师:根据以上信息,你能提出哪些数学问题?

生1:第一天和第二天各看了多少页?

生2:第三天看了多少页?

生3:前两天一共看了多少页?

生4:前两天一共看了几分之几?

生5:第三天看了几分之几?

……

师:同学们很会提问题,来看一看,求第三天看多少页怎样求?

学生在练习本上做,共同订正。订正时,强调也要先求出第三天对应的是总数的几分之几。

五、总结

师:我们今天重点学习的这种方法对我们的思维习惯是一个挑战,所以我们要有意多从这个角度的思考问题,这样对我们以后学习稍复杂的分数问题会很有帮助。




欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2