绿色圃中小学教育网

标题: “角的度量”教学反思 [打印本页]

作者: 网站工作室    时间: 2010-6-29 13:26
标题: “角的度量”教学反思
   角的度量这一课,要求学生能达到会用量角器正确量出角的度数的目标。具体说来,就是会把量角器的中心点对准角的顶点,并能根据角开口方向的不同,确定一条边为0度,选择量角器内圈(或外圈)数据,按正确的方向读出另一条边所指的度数。
       这对于许多孩子来说是比较困难的,因为量角器中有两圈数字,且顺序相反,学生往往分不清该读哪圈,往哪边数。尤其那些非整十度的角,是超过整十几度还是差几度未到,方向不同则数法不同。过去的教案手册中有建议用儿歌帮助学生读过难关的,如:“中心对顶点,底边对0线,他边看度数,分清内外圈。”这种儿歌能朗朗上口,但对于难点问题并没有实质性的突破。“分清内外圈”只是目标,如何分清才是策略。
       要找到解决难点的策略,必须分析造成难点的原因。我认为学生之所以分不清内外圈、找不对数的方向,原因是把角看作是静止的图形而非动态的过程,他们将角的两边孤立地量度,以为像量线段、看钟表一样,只要把一边对准0度,另一条指着几就读几。如果学生能把静态的角想象成从0度开始,慢慢打开,而度数随之增加的动态过程,我想问题就能迎刃而解了。
       由此,我认为应采取“变静态为动态”的教学策略,并通过三个层次的活动来实现。具体实施如下:
       活动一:伸展运动。我带着学生把两手臂伸开,当作角的两条边,把身体当作角的顶点。他们跟着我从两臂重合开始,一臂不动,另一臂慢慢展开,并一起读:0度、1度、2度、3度、4度、5度、10度、20度……到90度时停下来感受一下。然后继续:100度、110度……180度、……、360度。然后我引导说:我们可以这样想象,所有的角都是从0度慢慢张开的。
       这个活动学生很感兴趣,通过自己的肢体语言感受到角从0度张开的过程。虽然所指度数并不精确,但为后面在量角器上想象角的动态变化奠定了最直观的基础。
       活动二:穿针引线。刚才的肢体动作只是粗线条的感受,而第二个活动则开始进入精细化的认识了。学生已经在课前预习了量角器的外部特征,汇报后我拿出一张白纸,在上面画出一条射线,再用一根带黑线的针从射线的端点处穿出。这样,纸上的射线和穿出来的黑线就能形成动态的角了。我把量角器摆在上方,在实物投影中大大地演示出来。从0度开始,师问:“这时角的边所对应的刻度有两个:0度和180度, 该读哪一个?往下数的时候数内圈还是外圈?”学生很聪明,立即回答说“读0度,该读外圈。”随着老师缓慢地拉动针线,学生从外圈0度开始,也逐一读出了相应的数据,一直读到180度。接着,我又换了一个方向,从另一边的0度开始,这回学生反应可快了,“读内圈,因为这次的0度在里面!”……
      学生在动态中进一步感受到角的度数的变化过程,并明白了当选择不同方向为0度时,读数方向也随之改变的原理。这一活动为学生度量静止的角奠定了表象基础。
       活动三:笔尖指路。这一活动则是测量完全静止的角了,也是本节课最终要达到的目标。我在实物投影中呈现了一个完整的角,提出问题:“这个固定的角,你能想象出它是怎样展开的吗?”学生有两种意见,一种是把右面的边视为0度,慢慢展开;另一种是把左面的边视为0度而慢慢展开,同学们认为都是可以的。于是按不同的展开方向,我们共同确定了0度所在的圈,并从0度开始,用笔尖顺着数据增加的方向慢慢移动,边移动边读出整十、整五的数,直到接近角的另一条边,将度数准确读出。
       结束了三个活动后,我问学生:量角的时候,要特别注意什么?学生回答说:“一定要从0度开始顺着数下去。”是的,这正是量角的关键,他们学会了。课后,通过对学生作业的检查,发现虽然还是有些学生出错,但为数不多,而且只要面对面稍作指导也就懂了。聪明的孩子掌握原理后很快就能找到最接近整十、整五的刻度再进行加减;学习比较困难的学生则乖乖的从0开始,顺着方向将可见的度数一一读出。虽然速度会慢了些,但方法掌握了,相信熟练后就会快起来。
       以上三个活动之所以能带来较好的教学效果,我认为原因有三点:
       一、凸显了量角的原理。首先,在上述每一个活动中,学生都把角从0度展开,这就帮助了学生确定0度的边,也就是找到了度量的起点和标准。再者,学生一直开口读数,并都是从0度开始往下读。不管0边在左还是在右,也不管是内圈还是外圈,只要从0开始,从小到大地顺着往下读,就一定不会错,这其实也是在把复杂问题简单化、本质化,利于学生对量角方法的掌握。
       二、克服了知识的负迁移。学生学过用直尺度量线段的长度,这一知识基础和本节课的度量,本质上是一致的。但操作起来,量线段时学生只要对好了0刻度,观察线段另一端的刻度就行了,并且都是从左往右数的,这恰好对本节课容易造成负迁移。通过以上三个动态化的活动,打破了学生在度量上的思维定势,重新建立起正确的度量习惯。
       三、活动的层次性符合了学生的认知规律。三个活动都是以达成教学目标为目的,但体现了目标达成过程中从浅入深、从感性到理性的阶梯性。要让学生正确度量,必须建立刻度增加的动态表象,而动态的表象又有赖于直观的感受,因此从最直观的肢体语言到半抽象的角、最后到完全几何化的角,是一个递进的过程。符合了学生的认知规律,学生学起来自然轻松、清楚。
By:sunying  Posted @2007-10-2 17:10:
“角的度量”教学反思  
文章标签
用量角器量角
        角的度量这一课,要求学生能达到会用量角器正确量出角的度数的目标。具体说来,就是会把量角器的中心点对准角的顶点,并能根据角开口方向的不同,确定一条边为0度,选择量角器内圈(或外圈)数据,按正确的方向读出另一条边所指的度数。

       这对于许多孩子来说是比较困难的,因为量角器中有两圈数字,且顺序相反,学生往往分不清该读哪圈,往哪边数。尤其那些非整十度的角,是超过整十几度还是差几度未到,方向不同则数法不同。过去的教案手册中有建议用儿歌帮助学生读过难关的,如:“中心对顶点,底边对0线,他边看度数,分清内外圈。”这种儿歌能朗朗上口,但对于难点问题并没有实质性的突破。“分清内外圈”只是目标,如何分清才是策略。

       要找到解决难点的策略,必须分析造成难点的原因。我认为学生之所以分不清内外圈、找不对数的方向,原因是把角看作是静止的图形而非动态的过程,他们将角的两边孤立地量度,以为像量线段、看钟表一样,只要把一边对准0度,另一条指着几就读几。如果学生能把静态的角想象成从0度开始,慢慢打开,而度数随之增加的动态过程,我想问题就能迎刃而解了。

       由此,我认为应采取“变静态为动态”的教学策略,并通过三个层次的活动来实现。具体实施如下:

       活动一:伸展运动。我带着学生把两手臂伸开,当作角的两条边,把身体当作角的顶点。他们跟着我从两臂重合开始,一臂不动,另一臂慢慢展开,并一起读:0度、1度、2度、3度、4度、5度、10度、20度……到90度时停下来感受一下。然后继续:100度、110度……180度、……、360度。然后我引导说:我们可以这样想象,所有的角都是从0度慢慢张开的。

       这个活动学生很感兴趣,通过自己的肢体语言感受到角从0度张开的过程。虽然所指度数并不精确,但为后面在量角器上想象角的动态变化奠定了最直观的基础。

       活动二:穿针引线。刚才的肢体动作只是粗线条的感受,而第二个活动则开始进入精细化的认识了。学生已经在课前预习了量角器的外部特征,汇报后我拿出一张白纸,在上面画出一条射线,再用一根带黑线的针从射线的端点处穿出。这样,纸上的射线和穿出来的黑线就能形成动态的角了。我把量角器摆在上方,在实物投影中大大地演示出来。从0度开始,师问:“这时角的边所对应的刻度有两个:0度和180度, 该读哪一个?往下数的时候数内圈还是外圈?”学生很聪明,立即回答说“读0度,该读外圈。”随着老师缓慢地拉动针线,学生从外圈0度开始,也逐一读出了相应的数据,一直读到180度。接着,我又换了一个方向,从另一边的0度开始,这回学生反应可快了,“读内圈,因为这次的0度在里面!”……

      学生在动态中进一步感受到角的度数的变化过程,并明白了当选择不同方向为0度时,读数方向也随之改变的原理。这一活动为学生度量静止的角奠定了表象基础。

       活动三:笔尖指路。这一活动则是测量完全静止的角了,也是本节课最终要达到的目标。我在实物投影中呈现了一个完整的角,提出问题:“这个固定的角,你能想象出它是怎样展开的吗?”学生有两种意见,一种是把右面的边视为0度,慢慢展开;另一种是把左面的边视为0度而慢慢展开,同学们认为都是可以的。于是按不同的展开方向,我们共同确定了0度所在的圈,并从0度开始,用笔尖顺着数据增加的方向慢慢移动,边移动边读出整十、整五的数,直到接近角的另一条边,将度数准确读出。

       结束了三个活动后,我问学生:量角的时候,要特别注意什么?学生回答说:“一定要从0度开始顺着数下去。”是的,这正是量角的关键,他们学会了。课后,通过对学生作业的检查,发现虽然还是有些学生出错,但为数不多,而且只要面对面稍作指导也就懂了。聪明的孩子掌握原理后很快就能找到最接近整十、整五的刻度再进行加减;学习比较困难的学生则乖乖的从0开始,顺着方向将可见的度数一一读出。虽然速度会慢了些,但方法掌握了,相信熟练后就会快起来。

       以上三个活动之所以能带来较好的教学效果,我认为原因有三点:

       一、凸显了量角的原理。首先,在上述每一个活动中,学生都把角从0度展开,这就帮助了学生确定0度的边,也就是找到了度量的起点和标准。再者,学生一直开口读数,并都是从0度开始往下读。不管0边在左还是在右,也不管是内圈还是外圈,只要从0开始,从小到大地顺着往下读,就一定不会错,这其实也是在把复杂问题简单化、本质化,利于学生对量角方法的掌握。

       二、克服了知识的负迁移。学生学过用直尺度量线段的长度,这一知识基础和本节课的度量,本质上是一致的。但操作起来,量线段时学生只要对好了0刻度,观察线段另一端的刻度就行了,并且都是从左往右数的,这恰好对本节课容易造成负迁移。通过以上三个动态化的活动,打破了学生在度量上的思维定势,重新建立起正确的度量习惯。

       三、活动的层次性符合了学生的认知规律。三个活动都是以达成教学目标为目的,但体现了目标达成过程中从浅入深、从感性到理性的阶梯性。要让学生正确度量,必须建立刻度增加的动态表象,而动态的表象又有赖于直观的感受,因此从最直观的肢体语言到半抽象的角、最后到完全几何化的角,是一个递进的过程。符合了学生的认知规律,学生学起来自然轻松、清楚。


作者: 网站工作室    时间: 2010-6-29 13:27
《角的度量》的教学反思

    随着计算机技术特别是多媒体技术的迅速发展,运用信息技术辅助教学越来越受到人们的青睐。确实教育信息化提高了教学效果,多媒体演示使课堂声画并茂,所有这些提高了学生学习的积极性。为了让学生尽快享受到多媒体教学的好处,也为了探讨多媒体教学手段在课堂教学中的实际运用,结合我校的校本专题:“倡导有序,追求有趣,实现有效”。我进行了“角的度量”的教学尝试。

角的度量是小学数学教材第七册第 二单元的内容,教学目标是知道计量角的常用单位是“度”,认识表示度的符号“。”;认识量角器,会用量角器度量角的大小。这一内容是在学生初步认识线段、射线和角的基础上进行学习的,它是学习画指定度数的角和计算角的和差的基础。课中知识点较多,而新知识又较抽象、枯燥。以往大多是教师讲,学生看的形式。这节课上我改变了以往的教学方式,充分利用多媒体这一信息技术,使学生在自主探究和操作中积累感性认识,逐步形成较为熟练的测量技能。  

在上述教学中学生的学习兴趣相当浓厚,积极性很高。教学成功的关键之一是运用了多媒体,它把静态的量角器动态地展示在学生的面前,学生才能从中看出蕴含的规律。  

整个教学中我做到了以下两点:  

一、  引领学生进行自主学习,捕捉学生观察中的亮点。

学习过程是学习环境主体与学习相互作用的过程,教师应当为学生主体的主动参与创设必要的环境和条件,使得学生能够利用这些环境和条件主动学习获取知识。认识量角器是学习读数和量角的基础,而量角器对学生来说是较为陌生的。他们对它充满了好奇心和新鲜感。在此我让学生先自己观察量角器,给学生一个初步的感知,学生极易发现上面有很多的刻度和刻度线。但中心点学生发现较难。可在课上有一学生发现:“老师我的量角器上有一个小洞”。又有一个学生发现:“我的量角器上没有小洞,中间有一个相交的点”。此时我及时捕捉学生观察中的亮点,顺着学生的思维及时引导学生认识了这个小洞、相交点就是量角器的中心点。  

二、  运用现代信息技术促进学生自主学习和探究。

在信息技术与学科整合的过程中,信息技术必须更好地为促进学生的全面发展和个体化服务。在测量角的大小时,电脑演示出不同位置、不同大小的角,媒体上量角器的移动使学生清晰地了解量角时如何放置量角器,如何看刻度。课件的演示效果较好,而且节省时间,形象生动,吸引学生的注意力,缩短学生自主探究后表述的时间,观察和比较能力得到了发展。在教学中,注重优化教学过程和方法,通过学生的实际观察-操作-验证而得出结论。  

在练习部分,电脑出示了不同形式的题目,使学生进一步巩固量角的方法,帮助学生达到基本教学目标。不同题目、不同的难易程度尊重了学生的个别差异,同时也满足了不同层次学生的需要。通过现代信息技术教学使学生在练习中进行了自我探究学习,尊重了学生的个别差异,使每位学生得到了不同程度的提高。  

总之现代信息技术给学生的自主探究带来了乐趣,更给人以启迪。能让教师在课堂上游刃有余,让学生在课堂上兴趣盎然。
作者: 2268386505    时间: 2015-10-27 16:36
{:1_1:}谢谢




欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2