课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
上节课我们复习了小数,那么小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数的相关知识的复习,你们能找到正确的答案。[板书课题:分数(百分数)的认识]
⊙回顾与整理
1.分数的意义、分数单位及分数与除法的关系。
(1)师:什么是分数?什么是分数单位?
明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。
(2)师:分数与除法有着怎样的关系?
预设
生1:除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。
生2:因为0不能作除数,所以分数的分母不能为0。
2.真分数、假分数的特点。
(1)真分数的分子比分母小,真分数的分数值小于1。
(2)假分数的分子大于或等于分母,假分数的分数值大于或等于1。
3.分数的基本性质、约分和通分。
(1)师:什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
(2)师:什么是约分和通分?
预设
生1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。
生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(3)师:什么是最简分数?
分子和分母是互质的分数,叫做最简分数。
4.小数、分数、百分数的互化。
(1)小数、分数、百分数的互化。
①小数化成分数。
原来有几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约分。
例如:0.7= 1.25==
②分数化成小数。
用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数,一般保留三位小数。
例如:=3÷4=0.75 =3÷25=0.12
=3÷7≈0.429 =4÷9≈0.444
③小数化成百分数。
只要把小数点向右移动两位,同时在末尾添上百分号即可。
例如:0.23=23% 1.7=170%
④百分数化成小数。
只要把百分号去掉,同时把小数点向左移动两位即可。
例如:120%=1.2 85%=0.85
⑤分数化成百分数。
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
例如:≈0.143=14.3%
⑥百分数化成分数。
把百分数改写成分数,能约分的要约成最简分数。
例如:85%==
(2)师:谁能举例说一说什么样的分数能化成有限小数?
预设
生1:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
例如:=0.65,分母中只含有质因数2和5。
=0.8125,分母中只含有质因数2。
生2:如果一个最简分数的分母中含有除2和5以外的其他质因数,这个分数就不能化成有限小数。
例如:≈0.056
分母中除质因数2以外,还有质因数3。
(强调:如果不是最简分数,要把分数先化成最简分数,再判断。例如:的分母中含有除2和5以外的其他质因数,但它能化成有限小数,因为把化成最简分数后,它的分母中只含有质因数5)
⊙典型例题解析
1.课件出示例1。
一堆沙子重3吨,把它平均分成5份,每份是( )吨,每份占这堆沙子的( )。
分析 本题考查的是除法和分数在意义上的区别。第一个空填的是具体的数量,可以根据除法的意义,用总数量÷份数=每份的数量,即3÷5=(吨);第二个空填的是分率,可以根据分数的意义,把这堆沙子看作单位“1”,平均分成5份,每份就是这堆沙子的。
解答
2.课件出示例2。
比较与的大小。
分析 本题考查的是学生对分数的大小比较方法的掌握情况。本题的解法不唯一,选择的解法合理即可。
解答 方法一 通分。
=,=,因为<,所以<。
方法二 化成同分子分数。
=,=,因为<,所以<。
方法三 与比较。
因为<,>,所以<。
方法四 根据与1的差比较。
1-=,1-=,因为<,所以<。
方法五 根据倒数比较。
的倒数是2,的倒数是1,因为1<2,所以<。
⊙课堂总结
通过本节课的学习,掌握了分数的相关知识及分数与百分数、小数的关系,我们要能应用这些知识解决实际问题,做到学以致用。
⊙布置作业
教材75页4、7、8题。
板书设计
分数(百分数)的认识
分数(百分数)
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) | Powered by Discuz! X3.2 |