|
今天开始教学三步混合运算,在设计中重点引导学生理解运算顺序,还特意设计了:12×3+15×4=36+15×4=51×4=204元的错例分析,然而在课堂上,却没有出现这样的情况,反而在如何解决例题时出现了两种不同的方法:方法一:12×3+15×4;方法二:(12+15)×(3+4)。为了明确学生对数量关系的理解,就重新调整了教学环节,重点引导学生对两种解题方法进行辨析。
第一步:了解学生对两种算法的态度,通过统计发现大部分学生赞同第一种解法,有部分学生不置可否,还有3个同学坚持第二种方法也是正确的。
第二步:分析每一步计算的意义。第一种方法很快就被全体学生认可。第二种方法还是有不少学生表示困惑。为了解决这个问题,就借助了简图帮助学生理解。(△+○)表示一副象棋和一副围棋的价钱,(△+○)×(3+4)=(△+○)×7,这时表示的是什么?学生经过思考得出这样计算得到的结果表示7副象棋和7副围棋的总价,和题意不相符,所以是错误的。
经过这样的调整,学生基本对这个数量关系有了比较明确的认识。在后面的教学中,又发现学生对实际问题中的数量关系不是很清楚,所以在数量关系的分析上又花了不少的时间,例如人均居住面积等。
所以这节到底突出了什么重点似乎很难说了,似乎数量关系的分析倒成了重点了。计算课中计算能力的培养与解决实际问题能力的培养有时真的很难调整好,困惑之中。
|
|