第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。
3、真分数:分子小于分母的分数叫做真分数。真分数小于1。
4、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
6、 几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。
7、 互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
8、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。
9、
关系 最大公因数 最小公倍数
倍数关系 较小数 较大数
互质关系 1 他们的乘积
一般关系 短除法 短除法
10、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
11、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。
12、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
13、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
14、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。
15、 的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。作者: admin 时间: 2012-12-3 08:40