绿色圃中小学教育网

标题: 初中数学公开课《勾股定理的逆定理》教学设计与反思 [打印本页]

作者: 网站工作室    时间: 2012-11-15 13:46
标题: 初中数学公开课《勾股定理的逆定理》教学设计与反思
教学目标
一、知识与技能1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.
二、过程与方法1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想.2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神.
三、情感态度与价值观1.通过介绍有关历史资料,激发学生解决问题的愿望.2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神.
教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.理解并掌握勾股定理的逆定理,并会应用。
教学难点理解勾股定理的逆定理的推导.
教具准备 多媒体课件.
教学过程
一、创设问属情境,引入新课
   活动1 (1)总结直角三角形有哪些性质. (2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.
师生行为    学生分组讨论,交流总结;教师引导学生回忆.
本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.
    生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方: (4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
    师:那么,一个三角形满足什么条件,才能是直角三角形呢?
    生:有一个内角是90°,那么这个三角形就为直角三角形.
    生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
    师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
  二、讲授新课
    活动2   问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
    这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.
    画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.
设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.
师生行为   让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.
    生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.
    生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.
    再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.
    是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3    下面的三组数分别是一个三角形的三边长a,b,c
    5,12,13;7,24,25;8,15,17.
    (1)这三组效都满足a2+b2=c2吗?
    (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件.
师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论,
    教师对学生归纳出的结论应给予解释,我们将在下一节给出证明.本活动教师应重点关注学生:①对猜想出的结论是否还有疑虑.②能否积极主动的操作,并且很有耐心.
    生:(1)这三组数都满足a2+b2=c2.(2)以每组数为边作出的三角形都是直角三角形.
    师:很好,我们进一步通过实际操作,猜想结论.
    命题2 如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形.
    同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代中国人也曾利用相似的方法得到直角.直至科技发达的今天——人类已跨人21世纪,建筑工地上的工人师傅们仍然离不开“三四五放线法”.
    “三四五放线法”是一种古老的归方操作.所谓“归方”就是“做成直角”。譬如建造房屋,房角一般总是成90°,怎样确定房角的纵横两线呢?
如下图,欲过基线MN上的一点C作它的垂线,可由三名工人操作:一人手拿布尺或测绳的0和12尺处,固定在C点;另一人拿4尺处,把尺拉直,在MN上定出A点,再由一人拿9尺处,把尺拉直,定出B点,于是连结BC,就是MN的垂线.
    建筑工人用了3,4,5作出了一个直角,能不能用其他的整数组作出直角呢?
    生:可以,例如7,24,25;8,15,17等.
    据说,我国古代大禹治水测量工程时,也用类似的方法确定直角.
活动4    问题:命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.命题2 如果三角形的三边长分别为a,b,c,满足a2+b2=c2那么这个三角形是直角三角形.它们的题设和结论各有何关系?
设计意图:认识什么样的两个命题是互逆命题,明白什么是原命题,什么是逆命题?你前面遇到过有互逆命题吗?
师生行为:学生阅读课本,并回忆前面学过的一些命题.教师认真倾听学生的分析.
教师在本活动中应重点关注学生;①能否发现互逆命题的题设和结论之间的关系.②能否积极主动地回忆我们前面学过的互逆命题.
    生:我们可以看到命题2与命题1的题设.结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.
    生:我们前面学过平行线的性质和判定.其中“两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆命题.“两直线平行,内错角相等”和“内错角相等,两直线平行”也是互逆命题.
    生:“两直线平行,同旁内角互补”和“同旁内角互补,两直线平行”也是互逆命题.
三、课时小结
活动5问题:你对本节内容有哪些认识?
设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足学生多极化学习的需要.
师生行为:教师课前准备卡片,卡片上写出三个数,让学生随意抽出,判断以这三个数为边的三角形能否构成直角三角形.
    在活动5中,教师应重点关注学生:(1)不同层次的学生对本节的认知程度.(2)学生再谈收获是对不同方面的感受.(3)学生独立面对困难和克服困难的能力.

活动与探究
    Tom和Jerry去野外宿营,在某地要确定两条互相垂直的线,而身边又未带直角尺,可利用的只有背包带,你能帮他们想一个简单可行的办法吗?
    过程:确定垂线,即为确定一个直角,进而想到构造直角三角形.
结果:可在背包带上打结,在背包带上打13个等距离的结,把第5个结固定在地上,Tom拿住第1个和第13个结,而Jerry拿住第8个结,拉直背包带,第5个结处即为直角

作者: 网站工作室    时间: 2012-11-15 13:47
教学反思
在本节课的教学设计中,注意从学生的认知水平和亲身感谢出发,通过创设认知冲突和数学史的学习情境,提高学生学习数学的积极性、学习兴趣以及人文意识,设计系列活动让学生经历不同的学习过程。在活动过程中让学生动手画图、测量、判断、找规律,猜想出一般的结论,然后由学生想、画、叠等验证结论、证明结论,使学生自始自终感悟、体验、尝试到了知识的生成与发展过程,品尝着成功后带来的乐趣。这不仅使学生学到获取知识的思维和方法,同时也体会在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气。
要想真正搞好以探究运动活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民。
作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者,因此,课堂教学过程的设计,也必须体现出学生的主体性。




欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2