绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 13965|回复: 9
打印 上一主题 下一主题

北师大版八年级上册数学第四章四边形导学案教学案

[复制链接]
跳转到指定楼层
楼主
发表于 2012-9-3 14:59:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
      本套北师大版八年级上册数学第四章四边形导学案教学案由绿色圃中小学教育网免费提供资源。转载请注明出处。
       教案下载方法:右键点击下面的教案附件,选择目标另存为,保存在桌面上或你的电脑上解压缩即可使用!


八年级上册数学4导学案.rar (406.87 KB, 下载次数: 7520)
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2012-9-3 15:00:04 | 只看该作者
第四章:四边形性质探索
【课题】  平行四边形的性质
【学习目标】:
1、理解并掌握平行四边形的定义;掌握平行四边形的性质定理1及性质定理2(重点)。
2、理解两条平行线的距离的概念。
3、经历探索平行四边形的有关概念和性质的过程, 发展自己的探究意识和合情推理的能力(难点)。
【学习过程】:
一、学前准备:
1、什么是四边形?四边形的一组对边有怎样的位置关系?

2、一般四边形有哪些性质?

二、合作探究:
1、平行四边形的定义:
(1)定义:                                             。
(2)几何语言表述                                             。
(3)定义的双重性:具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用______表示,如_______ABCD.
2、探究平行四边形的性质:
探究: 已知:如图1,平行四边形ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
   
        (图1)
结论   性质1:                                          。
性质2:                                          。
3、两条平行线间的距离:
推论1:                                               。
平行线间的距离是指:                                                   。
推论2:                                                           。
三、应用与迁移
例1:(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。


更多免费资源下载绿色圃中小学教育网Http://Www.lsPjy.Com 课件|教案|试卷|无需注册

【学习检测】
基础练习:
1.如图2,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,
求证:BE=DF。






2、如图3:在 ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有(    ).
(A)4个      (B)5个       (C)8个       (D)9个
        (图2)                (图3)               (图4)
拓展练习:
3、如图4,AD∥BC,AE∥CD,BD平分∠ABC,
求证:AB=CE。
  



4、农民李某想发展副业致富,经考察地形后,在耕地旁边的荒地上开垦一平行四边形形状的鱼塘。能测得∠BAD=1200,量得AB=50米,AD=80米。请你帮助李某一下鱼塘的对边AD、BC之间的距离及这个鱼塘的面积。
回复

使用道具 举报

板凳
 楼主| 发表于 2012-9-3 15:00:09 | 只看该作者

【课题】  平行四边形的性质2
【学习目标】:
1、掌握平行四边形对角线互相平分这一性质,并会用此性质进行有关的论证和计算(重点)。
2、经历观察、猜想、实验、验证等数学活动,认识平行四边形的性质。
3、通过多种方法探究平行四边形的性质,体验解决问题策略的多样性(难点)。
【学习过程】:
一、学前准备:
1、复习:四边形的内角和、外角和定理? 平行四边形的性质定理1、2的内容? 什么叫两条平行线的距离?
              


二、合作探究:
探究:如图1,□ ABCD的两条对角线AC,BD相交于点O,
1、图中有哪些三角形是全等的?有哪些线段是相等的?

2、能设法验证你的猜想吗?






3、你能发现平行四边形的对角线有什么性质?
性质3:                                                 。
三、应用与迁移
1、课本例3  已知:如图,□ ABCD的两条对角线AC,BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长。









2、从边、角、对角线总结平行四边形的性质:
  从边看:_____________________________________________________________。
  从角看:________________________________________________________________。
  从对角线看:_____________________________________________________________。
【学习小结】:

【学习检测】
基础练习:
1、课本练习1、2;   




拓展练习:
2、如图,在▱ABCD中,已知AC、BD相交于点O,两条对角线的和为24cm,BC长为8cm,
求△AOD的周长。











3、如图,D是等腰三角形ABC的底边BC上的一点,E、F分别在AC、AB上,且DE∥AB, DF∥AC.试问DE、DF与AB之间有什么关系吗?请说明理由.






【课题】: 平行四边形的判定1
【学习目标】:
1、掌握平行四边形的判定定理1、2、3,并能与性质定理、定义综合应用(重点)。
2、使学生理解判定定理与性质定理的区别与联系(难点)。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
【学习过程】:
一、学前准备:
1、平行四边形的定义:_____________________________________________________。
2、平行四边形有什么性质:               


二、合作探究:
1、动手试一试:将线段AB按图中所给的方向和距离,平移成线段CD,构成一个一组对边平行且相等的四边形ABDC,你能说出它一定是平行四边形吗?为什么?

                                            
回复

使用道具 举报

地板
 楼主| 发表于 2012-9-3 15:00:14 | 只看该作者


2、探究归纳:
平行四边形判定定理1:____________________________________________________。
平行四边形判定定理2:____________________________________________________。
平行四边形判定定理3:____________________________________________________。
三、应用与迁移
例1  已知:如图,点E、F是□ ABCD的对角线AC上两点,且AE=CF。
求证:四边形BEDF是平行四边形。
    D                   C
                  F
     E
A                   B





【学习小结】:
【学习检测】
基础练习:
1、下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是(  )
A、1:2:3:4              B、2:2:3:3
C、2:3:2:3              D、2:3:3:2
2、下面给出的条件中,能判定一个四边形是平行四边形的是(    )
A、一组对边平行,另一组对边相等  B、一组对边平行,一组对角互补
C、一组对角相等,一组邻角互补   D、一组对角相等,另一组对角互补
3、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有(  )
A.1个   B.2个    C.3个    D.4个
4、已知:如图,在平行四边形ABCD中,E、F分别是AB,DC上的两点,且AE=CF.
求证:BD,EF互相平分。                                              F
                                                         D                 C


                                             
                                               A     E         B



拓展练习:
5、已知:如图,在平行四边形ABCD中,点G、H分别是AB,CD的中点,点E、F在AC上,且AE=CF.
求证:四边形EGFH是平四边形.










【课题】平行四边形的判定2
【学习目标】:
1、掌握平行线等分线段定理及推论,并会等分一条已知线段(重点);
2、理解三角形中位线定理,会应用三角形中位线定理解决问题(难点);
3、综合应用平行四边形的性质与判定解决问题。
【学习过程】:
一、学前准备:
1、平行四边形的定义:_____________________________________________________。
2、平行四边形有什么性质:               


3、平行四边形的判定方法:


二、合作探究:
1、动手试一试:每一个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平行的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 l ,看看这条直线被相邻的横线截成的各线段有什么关系?这时在横格纸上再任画一条于横线相交的直线l ',测量它被相邻横线截得的线段是否也相等?
2、已知:如图,直线 ∥ ∥ ,AB = BC 。求证:GO = HO
证明:过 O 作 EF ∥ AC ,

3、探究归纳:
平行线等分线段定理:__________________________________________________________。
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组。
4、推论: ____________________________________________________________。
5、三角形的中位线:____________________________________________________。
三、应用与迁移
例1、已知:如图,点D、E分别为ΔABC的边AB、AC的中点,
求证:DE∥BC,且DE=1/2BC
             A
     D        E

B               C
【学习小结】:
回复

使用道具 举报

5#
 楼主| 发表于 2012-9-3 15:00:21 | 只看该作者

【学习检测】
基础练习:
1、判断:
一组对边平行,一组对边相等的四边形是平行四边形。(  )
一组对边平行且相等的四边形是平行四边形.(  )
两组邻角相等的四边形是平行四边形.(  )
两组邻角互补的四边形是平行四边形.(  )
对角线互相垂直的四边形是平行四边形(  )
一组邻边相等且一条对角线平分另一条对角线的四边形是平行四边形。( )
平行四边形一组对边中点的连线与另一组对边平行且相等.(  )
对角线互相垂直且相等的四边形是平行四边形.(   )
拓展练习:
2、已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.
(1)猜想:DF与AE间的关系是______.
(2)证明你的猜想.








【课题】:矩形 菱形 正方形 (第一课时)
【学习目标】:
1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。(重点)
  2.通过图形的变化,来经历观察、思考、合作、探究等数学活动;体会化归、建模、归纳等数学思想。(难点)
  3、在自主探究中学到方法,学会合作,学会倾听,在解决问题的过程中体验成功。
【学习过程】:
一、学前准备:
想一想:一般四边形与平行四边形之间的相互关系?在下图的圆圈中填上“四边形”和“平行四边形”的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。







小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在上图中再画一个圈表示矩形,这个圈应画在哪里?

二、合作探究:
问题1:平行四边形具备什么条件时,就成了矩形?
矩形的定义:                                            。
三、知识归纳:
问题2:矩形是特殊的平行四边形,它除了“有一个角是直角”以外,还可能具有哪些平行四边形所没有的特殊性质呢?
1、                                       。
2、                                       。
(试给予证明)





问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?
(学法建议:先观察图,并猜想,然后给出证明)



四、应用与迁移
例1:(课本例1)




例2:(课本例2)





由例2得出结论:                                              。
  【学习小结】:
1、我的收获:

2、我的困惑:

【学习检测】
基础练习:
1、下列性质中,矩形具有而平行四边形不一定具有的是(     )。
   A、对边相等    B、对角相等     C、对角线相等     D、对边平行
2、在矩形ABCD中,∠AOD=130°,则∠ACB=__     _。
3、已知矩形的一条对角线长是8cm,两条对角线的一个交角为60°,则矩形的周长为______。
4、矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,   
对角线是13cm,那么矩形的周长是____________。
拓展练习:
5、如图所示,矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为_____。
回复

使用道具 举报

6#
 楼主| 发表于 2012-9-3 15:00:26 | 只看该作者

6、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为_____。





【课题】:矩形 菱形 正方形 (第二课时)
【学习目标】:
1、明白菱形的形状、菱形与平行四边形的从属关系,并能应用菱形的性质解决具体问题;(重点)
2、在操作、观察、分析的探究活动中,养成主动探究的习惯和方法,进一步了解和体会说理的基本方法;(难点)
3、在学习中逐步培养严密思维的习惯和初步的审美意识。
【学习过程】:
一、学前准备:
1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
 
   2.矩形中对角线与大边的夹角为360,求小边所对的两条对角线的夹角.
 
  3.矩形的一个角的平分线把较长的边分成5cm、3cm,求矩形的周长.


二、合作探究:
1.菱形定义:                                。
  学习这个定义时,要抓住概念的本质,应突出两条:
  (1)强调菱形是            。  (2)一组邻边      。
  2.菱形的性质:
  菱形既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.
   菱形性质定理1:                              。
菱形性质定理2:                                            。
   (试完成定理的规范证明)






3、菱形的判定方法:
     定理1:                                           。
     定理2:                                                   。
(试完成定理的规范证明)





三、应用与迁移
例1  课本例4
  (当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积.)






例2 已知菱形  的边长为2cm,  ,对角线  ,  相交于点  ,如下图,求这个菱形的对角线长和面积.












【学习小结】:
1、我的收获:


2、我的困惑:


【学习检测】
基础练习:
1、课本练习。
2、已知菱形的一条对角线的长为12cm,面积是30cm2,则这个菱形的另一条对角线的长
为         cm。
3、已知菱形的两条对角线长分别为6和8,则它的边长为       。
4、菱形的对角线长为24和10,则菱形的边长为         ,周长为        。
   拓展练习:
5、菱形的两条对角线分别为4和7,则菱形的面积为           。
6、菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________。
7、已知菱形两邻角的比是1:2,周长为40cm,则较短对角线的长是         。
回复

使用道具 举报

7#
 楼主| 发表于 2012-9-3 15:00:30 | 只看该作者

【课题】:矩形 菱形 正方形 (第三课时)
【学习目标】:
1、知道正方形的定义,弄清正方形与平行四边形、菱形、矩形的内在联系;(重点)
2、通过类比,探索并掌握正方形的性质;通过活动,会正确利用正方形知识解决相应问题;3、通过四边形的从属关系渗透集合思想。(难点)
【学习过程】:
一、学前准备:
准备好一张矩形纸片,按要求对折一下,裁出正方形纸片。
问题:所得的图形是矩形吗?它与一般的矩形有什么不同?
      所得的图形是菱形吗?它与一般的菱形有什么不同?
      所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:                                               叫做正方形二、合作探究:
问题1:由正方形的定义可以得知:正方形是有一组邻边    的矩形,又是有一个角是     的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.
请同学们推断出正方形具有哪些性质?
性质1: (1)正方形的四个角          。
(2)正方形的四条边          。
性质2: (1)正方形的两条对角线          。
(2)正方形的两条对角线              。
(3)正方形的每条对角线              。
问题2:如何判断一个四边形是正方形?你能找出几种?



四、应用与迁移
例1、课本例6;




例2、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O.
求证:△ABO、△BCO、△CDO、△DAO是全等的


【学习小结】:

【学习检测】
基础练习:
1、课本练习1、2。
2、正方形对角线长12,则它的面积是_____。
3、正方形具有而菱形不一定具有的性质是( )。
  A.对角线互相垂直       B.对角线互相平分
  C.对角线相等         D.对角线平分一组对角
4、一组对边平行且相等的四边形:①一定是平行四边形;②可能是矩形;③不一定是菱形;④不一定不是正方形,其中( )。
  A.只有①对  B.只有④对   C.所有说法都对  D.③和④不对
     拓展练习:
5、正方形内一点P,到各边的距离为2、3、4、5,则正方形的面积为(   )。
  A.36     B.49      C.64     D.81
6、如下图,正方形ABCD中, .求证:四边形EFGH是正方形.



多边形内角和 (一)
【学习目标】:
1、了解多边形及其相关概念,会用字母表示多边形。
  2、经历探索、总结并掌握多边形内角和定理(重点)。
  3、通过多边形内角和定理的探索,培养学生的自主探索与合作交流,体会化归思想(难点)。
【学习过程】:
一、学前准备:
  1、观察身边的物体,找出熟知的图形,如平行四边形、长方形、正方形和梯形等,从而得出:                                                       的封闭图形叫做多边形的概念。
2、了解多边形相关的概念:边、顶点、内角、外角,以及凸多边形概念。
  (1) 从图20-1中任选一个,说出它的边、顶点、内角、外角





       (1)            (2)           (3)
                图 20-1
  (2)                                                          叫做凸多边形。
  二、合作探究:
[探究1] 我们知道三角形的内角和是180°,那么怎样求四边形的内角和呢?能否将问题转化为三角形来求解?你用了哪些方法?与同伴交流。
                                                 叫做多边形的对角线。
方法一:                                方法二:
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-23 05:00

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表