绿色圃中小学教育网

标题: 《相交与垂直》课件 [打印本页]

作者: 梦想成真    时间: 2008-11-25 17:07
标题: 《相交与垂直》课件
《相交与垂直》课件

相交与垂直.rar

667.7 KB, 下载次数: 8379

rar


作者: 天高云淡    时间: 2008-12-7 14:47
《相交与垂直》课件
作者: TGYD    时间: 2008-12-24 14:16
小学数学课件
作者: 吕长敏    时间: 2008-12-28 11:41
标题: 发掘学生资源,充实数学课堂教学
新课程理念就像一阵新鲜的海风,不断冲击着我们的课堂教学;也像一名年轻的开拓者,不时地带给我们神采和活力。我们的学生是有生命的人,他们有人格、有尊严、有理想、有追求,他们渴望获得自由、获得发展,那我们的课堂也应该具有思想、活力和发展。《数学课程标准》中明确指出:有效的学习活动不能单纯依赖模仿与记忆,动手实践、自主探究、合作交流是学生学习数学的重要方式。因而,我们的数学课堂教学就应营造浓厚的自主学习氛围,唤起学生的主体意识,激起学习兴趣,使学生调动自身的学习潜能,进行自主学习,成为课堂学习的主人。

  一、变被动接受为自主学习

  传统的数学课堂教学通常以例题、示范、讲解为主要方式。在客观上形成学生只能被动接受,因此课堂中几乎看不到猜想、实验、观察、推断等学生亲身体验的实践探究活动。教师应从学生好表现,求参与的心理需要出发,尽可能多给学生提供自主探究的机会,改变以往那种让学生跟在自己后面亦步亦趋的习惯,引导学生自主学习。

  1、合理创设情境,使学生乐学。

  在课堂教学中,合理创设情境,不仅能够激发学生学习的兴趣,帮助学生理解教材内容,加深印象,提高教学效率,而且能唤醒全体学生的认知系统,拓展思维,成为学习的主人。例如:教学“有余数除法”时,上课一开始,有位教师就投影出示“为了庆祝六一国际儿童节,学校把红、黄、蓝、白、橙、灰六种太阳帽按顺序发给全校学生。”接着告诉学生只要你报出第几个学生,老师就马上告诉你,他的帽子是什么颜色。学生将信将疑,但跃跃欲试。学生所报的数,教师次次猜中,学生产生了极大的好奇心。这时告诉大家,学习了“有余数除法”,你们就会知道其中的奥秘了。这样学生整堂课都怀着极大的兴趣投入了学习。

  2、把时空留给学生,使学生研学。

  教学实践证明,学生自主学习的愿望是强烈的,它要求教师树立强烈的学生意识,把学习的权利和探索的时空留给学生,让学生自己选择学习的方式,设计活动方案,安排学习程序,通过观察、操作、猜测、思考、讨论、验证等多种活动,在研学中获取知识,同时,形成自己自主学习的能力和刻苦钻研精神。如在教学“移多补少应用题”的操作实践中,教师不暗示学生操作的方式、途径,仅提出实验目标:“你能通过看一看、想一想、移一移,说说这类应用题的解题方法吗?”从而将实验探索的时空留给学生,让学生通过自主尝试、实验、交流,多角度地探究出问题的解决方式,极大地丰富了学生的感性认识,培养了学生探究能力。

  3、渗透学法指导,使学生善学。

  良好的学习方法,是学好知识的前提和保证,并能达到“事半功倍”的效果。教师在教学中要以身示范,明确要求,使学生在潜移默化中获得学习方法。如在解应用题时,教师要组织学生讨论从何想起?怎么想?怎么做的?让学生从讨论中领悟方法,进行学法交流,比一比谁的方法好,让学生之间取长补短,形成良好的学习习惯。

  在教学过程中,教师要充分相信学生、尊重学生,以充分调动学生学习的积极性为前提,以教给学生学习方法为重点,以促进学生智能提高为核心,把学生作为课堂的主人、学习的主人,让学生有足够的时间操作、观察、思考、质疑、讨论、练习、评价等,就能使学生逐步形成具有较强的自主学习素质,从而更加主动地学习,主动地发展。

  二、变教师讲述为学生操作

  目前数学课堂普遍存在的问题:一是讲风太盛,教师唯恐讲不够;二是华而不实,没有突出以操作为始头的思维活动。操作是思维的起点,认知的来源,也是认识事物的开端。课堂中鼓励人人动手,人人操作,通过自己摆一摆、拼一拼、量一量的活动去发现规律,通过动手、动脑、动口多种感官参与学习活动,不但掌握学习数学的方法,而且能加深理解,学以致用,有很大善处。例如:教学“平行四边形的面积”时,首先让学生通过剪一剪、拼一拼,获得平行四边形与长方形的关系,其次充分发挥学生之间的互补作用,展开讨论,他们在实践中轻松的掌握平行四边形面积的计算。学生通过直观操作,不仅提高实践能力,而且使学生的认知结构进一步优化。

  因此,我认为数学课堂必须让学生得到动手操作的机会。不但要把实践操作活动作为学习知识、掌握知识的一种方法,也要挖掘表象隐含的智能因素,利用它发展知识,使学生手、口、眼、脑进行立体化互动,培养学生的实践能力,实践是创新的源泉。我们应该彻底改变旧的教学模式,从小培养学生“试一试”的精神,使学生敢于尝试,善于尝试。

  三、变个人学习为合作交流

  合作是人类社会赖以生存和发展的重要动力,学会共同生活,培养在人类活动中的参与和合作精神是教育不可缺少的重要组成部分。合作学习作为对传统教学组织形式的一种突破和补充,已经被教师越来越广泛地运用于以学生发展为本的课堂教学之中,这也是新一轮课程改革所倡导的自主、探索与合作的学习方式。

  1、营造适合学生合作学习的环境。

  “以知识为本”的课堂教学,注重的是“知识的灌输”或是“知识的移植”,客观上造成了一种沉闷、压抑的而非合作化的环境。而“以学生发展为本”的课堂教学,注重的是学生在感受和参与中体验到成功的快乐。学生是具有丰富个性的学习者,不同学科的学习规律也有所不同,并非在任何教学条件下,合作学习都是最佳的教学组织形式。但流畅、和谐、默契、尊重、信任的学习环境,却是新课程理念下的课堂教学的“共性”。

  2、留给学生足够的独立思考时间

  合作学习是建立在学生个体合作需要基础上的,在学生个体解决某个数学问题遇到障碍,苦思而不得其解时进行合作学习才有价值,才有成效。但在实际教学中,有些课为了追求合作气氛,或是一味追求求异思维,教师呈现问题情境后,不留给学生片刻思考时间,就立刻宣布“下面开始小组合作学习”,这样学生还没来得及思考问题情境,更谈不上自己的独立方案,容易造成要么组内优生一言堂,要么使讨论流于形式,达不到合作学习的目的。因此,在小组合作学习前,教师一定要让学生有独立思考的时间。

  3、精心设计合作学习中的问题

  教师设计的问题要有利于促进学生动脑,主动探究数学知识,有利于集体研究,促进合作学习。不提出过于简单,不假思索就能解决的问题。问题过于简单,学生张口就会,看起来气氛活跃,久而久之,学生容易形成思维惰性,不利于创新意识的培养。如教学“梯形面积”时,可组织学生量一量、画一画、拼一拼,然后就利用两个梯形拼成一个平行四边形提出:“通过刚才的学习你发现了什么?”如果学生回答有困难,再设计以下问题:(1)这个平行四边形的底与梯形的上、下底有什么关系?(2)平行四边形的高与梯形的高有什么关系?(3)每个梯形的面积与拼成的平行四边形的面积有什么关系?(4)梯形的面积应怎样算?梯形面积计算公式导出后,为加深学生对公式的理解和记忆又问:计算梯形面积为什么要除以2?这样有效地指明了学生参与的方向,在小组合作学习中,学生通过动手、动脑、动口来促使学生去寻找事物之间的联系,抓住本质,寻找共同点,促进组内交流,顺利地实现了自我构建和知识创造。

  在课堂教学中,教师只要转变教育观念,充分尊重学生、信任学生,以学生为主体,与学生密切合作,就能诱发学生的学习动机,从而充分调动学生学习的积极性、主动性、自觉性和创造性,让学生在有限的课堂教学中焕发出生命的活力!

作者: 吕长敏    时间: 2008-12-28 11:42
标题: 由一个小括号引起的思考
2
推荐
教学分数简便计算是,我让学生板演:3/5+3/7+2/5,学生A列式为:3/5+3/7+2/5=(3/5+2/5)+3/7=1+3/7=1又3/7;学生B列式为:3/5+3/7+2/5=3/5+2/5+3/7=1+3/7=1又3/7。不难发现,学生A其计算过程中多了一个小括号。面对他的小错误,我没有敷衍了事,而是引发学生对两式进行观察、分析、对比、讨论。“谁的解法更合理呢?”一句话激起了他们探索的欲望。讨论很激烈,不一会儿很多学生已经举起小手其中也有学生A,我便特意让学生A来回答:“B式更合理,我多添了一个小括号,添小括号应该先算小括号里面的3/5+2/5,而这题不添小括号也是先算3/5+2/5,所以括号是多余的。”我听了他的回答真是惊喜,拍手说:“你真聪明,你这种能发现自己错误并改正错误的精神真是值得大家学习。”
面对学生典型、鲜活、真实的错误,我们在教学中有时置之不理;有时直接告诉学生答案替代学生思考、替其进行优化择取;学生只是被动的聆听、被动的接受。久而久之学生会不会就没有思考的习惯、质疑的精神。面对学生的错误,我们教师是不是该留给学生一定的时间、空间,让他们自己去发现错误、改正错误。在课堂教学中我们教师要是能利用学生的出现错误培养其敢于面对错误、发现错误、改正错误的精神,岂不是对孩子的成长更重要


作者: 吕长敏    时间: 2008-12-28 11:43
标题: 谈学习态度、习惯和方法对成绩的影响
一、方法
    数学学习离不开代数和几何,所以这两个数学的分支有不同的学习方法。代数注重变化的能力,几何注重抽象思维、辨别图形的能力。所以说在面对代数和几何的时候要不同的对待。经过网上的查阅,主要看到的方法是这一种:
   1.代数学习法。
       ⑴抄标题,浏览定目标。
       ⑵阅读并记录重点内容。
       ⑶试作例题。
       ⑷快做练习,归纳题型。
       ⑸回忆小结。
   2.几何学习四大步。
       ⑴.①书写标题,浏览教材,②自我讲授,写出目录;
       ⑵.①按目录,读教材,②自我讲授几何概念及定理;
       ⑶.①阅读例题,形成思路,②写出解答例题过程;
       ⑷.①快做练习,②小结解题方法。
   从以上的方法中,我们可以看出学习代数和几何的不同之处,但是也有相同点,这也是数学学习的精华所在,比如归纳题型,可以说是总结。题目无论怎么变化,就是一张白纸,题目的难度就像是白纸的厚度,有的很简单,就只有一张纸,可以一眼看到底,有的题目很难,则需要一层层的揭开它。但是知识点是不会变化的。
二、习惯
   如果说数学的学习方法是外在的,那么数学学习习惯就要靠自己的培养了,看过一些教育活人生立志之类的书籍的人都知道“习惯可以决定的命运”。所以说习惯是不可忽视的。本人在习惯方面就做得不够好。我主要说说如下几点:
   1.草稿
   在打草稿的时候,字总是很大,并且很不整洁,这可以导致计算时的错误和后期检验的问题,本人“受益匪浅”啊!
   2.审题
   读题时候的认真也是很重要的,想必大家都有这样的经历,在做题的时候,做了半天都没做出来,也许是不经意的瞥了一下题目,或者是老师同学的提醒,突然发现出现了某某条件或者某某关系。于是题目很快就轻易解决,审题不清往往会导致错误的结果,或者浪费时间,特别是在考试中,浪费了时间就很可能做不完题目,导致丢分。
   3 .效率
   这一点是很多学生的通病,以前我也有过,不仅在数学这个科目上,其他的科目也有,比如,你做着做着,突然觉得很厌倦,于是这里看看,那里看看,也许看到一个题目,很长很长,顿时就不想做了,发发呆,转转笔,Time goes by,于是今天又要“奋战”到很晚了。如果久而久之成了习惯,那就很难摆脱了。
   4.书写
   规范书写,保持书写清洁的习惯。作业的格式、数字的书写、数学符号的书写都要规范。书写包括了格式,大家都知道,答案在试卷中只占有很少的分量,错了结果,扣一分,错了过程,也许就要扣得多了。而过程与格式有密切的关系。所以一定要注意书写。
   习惯的养成不是一朝一夕的,而习惯的培养却要从一点一滴做起。只有平时注意有效学习,才能逐步形成使自己终身受益的良好习惯。看看一些培养习惯的资料,应该知道怎么做了。
    (1).坚持“先复习,再作业”和“边作业,边复习”的练习模式,养成阅读习惯。不少同学考试前比较注意对所学内容的归纳、总结,但平时做作业就不注意对课堂上学到的东西进行归纳,感觉学习效率较差。做题前先整理一下课堂学到的内容,做作业遇到困难时多注意阅读,可以提高练习的效率,而且对提高自己的阅读能力也有帮助。
    (2).力戒“浮躁”作风,踏踏实实地进行学习。做作业不要图“快”,要在提高正确率的基础上再追求解题的速度。只有平时就养成这样的好习惯,才能在平时的练习和考试时避免犯“低级性错误”。
    (3).加强学习反思,提高学习的效率。美国著名教育家杜威认为,常规活动是循规蹈矩的,不能引起相应的行为上的变化,而反思行为则是自发地对其活动进行认知和评价,能够促使行为向更理性、更高的水平上发展。对自己的学习行为和考试、练习中发生的错误不时进行反思,可以及时发现问题,纠正自己的不良习惯,并能够进一步提高自己的学习效率和学习能力,找到适合自己的学习方式。
    三、态度
    数学学习态度也是尤为重要的,态度很多情况下由心情决定,可是人不能想学就学,如果你的学习态度不好,厌学,干脆先别学,去放松一下自己,呼吸一些新鲜空气,让自己放松,使自己的愉悦起来,于是,什么在眼中都变得可爱了。

作者: 吕长敏    时间: 2008-12-28 11:44
标题: 小学数学解题规范
解题是深化知识、发展智力、提高能力的重要手段。规范的解题能够养成良好的学习习惯,提高思维水平。在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用。要克服题海战术,强化解题的作用,就必须加强解题的规范。
解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面。
一、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。
目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。
解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
二、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。
因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。
三、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答案规范,就必须审清题目的目标,按目标作答。
四、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾节思考,只有这样,才能有效的深化对知识的理解,提高思维能力。
(1)有时多次受阻而后“灵感”突来。不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。
(2)这些方法的熟练程度密切相关,学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力。

作者: 吕长敏    时间: 2008-12-28 11:46
标题: 小学生学习数学的方法及培养途径
为了适应学生的学习心理,发掘其潜能,义务教育教材已适当地降低了对数学知识体系严密性的要求,拉开了知识结构之间的“距离”,并以“结构化”与“问题化”互补的教材体系呈现出来。因而,学生必须掌握、并且具有一定的学习数学的方法,提高和发展学习能力,这也是上海“数学教育行动纲领”所提出的“基础能力”的要求。
  为此,我们对小学生应具有的主要的学习数学的方法及其相应的培养途径进行了实践,以发展学生学习数学的能力。
  1.良好的学习习惯。叶圣陶先生说过:凡是好的态度和好的方法,都要使它化成习惯。只有熟练成了习惯,好的态度和方法才能随时随地表现……一辈子受用不尽。叶老的话阐明了良好的学习习惯和学习方法的关系:良好的学习习惯既是学生形成学习方法的基础,又是他们具有了一定的学习方法的集中体现。因此,培养学生从小养成良好的学习习惯具有十分重要的意义。主要的培养途径有:
  (1)课前预习。预习的方法:明天要学习什么内容,是否能用今天学习的知识去解决它;在不懂的地方画上记号;尝试地做一二道题,看哪里有困难……上课伊始,教师先检查学生预习情况,并把上面的预习方法经常交代给学生。学生预习后就可带着问题投入新课的学习,上课时就更有目的性和针对性。这样做对于提高课堂学习的效果,养成学生的自学习惯,提高自学能力都有积极作用。
  预习数学内容会显得较枯燥,所以,教师要经常表扬自觉预习的学生,以激励全体学生预习的积极性。
  (2)课后整理。要养成先复习当天学习的知识,再做作业,最后,把学习内容加以整理的习惯。例如,能被2、5整除的数的特征,一位同学整理如下:
  
       个位是0的数同时能被2和5整除
  这样,容易使学生学到的知识系统化,从而内化为他们的认知结构。
  (3)在课内,要求学生:一要仔细看教师的操作演示、表情、手势;二要全神贯注地听老师的提问、点拨、归纳以及同学的发言;三要积极思考、联想;四要踊跃发表自己的想法,有困惑应发问,敢于质疑。
  (4)要养成检查验算的习惯。检查验算的过程既是一种培养学生负责态度的途径,又是学生对自己思维活动的再认识过程。如有题:一个水池能盛水54吨,甲、乙两个水管同时向池内放水,3小时放满。
  已知甲管每小时放水5吨,乙管每小时放水多少吨?学生设乙管每小时放水x吨,且列方程:5×3+3x=54,54-3x=5×3,54-5×3=3x,(x+5)×3=54,5+x=54÷3,54÷3-x=5……最后解得x=13。学生一方面要检验x=13是否是方程的解;另一方面要检查列方程的依据是什么,解答过程是否简练。如果发现错了,那么失败就成了成功之母。这种“认知元”的发展是学生养成良好的学习习惯的重要标志。
  2.尝试活动。学生原有的认知结构具有同化作用,这是学生能进行尝试活动的心理支撑点。因此,学生具有了某一认知结构后,接着学习相应的后面知识时,教师可让学生去尝试学习。例如,学生掌握了整数四则混合运算顺序之后,可请他们去尝试学习“小数四则混合运算”,然后,教师稍作点拨:整数四则混合运算顺序同样适用于“小数四则混合运算”。学生就可同化新知识,从而构建新的认知结构:整小数四则混合运算的顺序都是:先乘除,后加减,有括号的要先算括号里的。
  当学生掌握了“分数乘法应用题”,又理解了比与分数之间的关系以后,教师可让学生去尝试学习“按比例分配”的应用题。
  3.操作活动。当学生原有的认知结构似乎能同化又同化不了新知识时,他们的学习心理就有求助于外围行为的倾向。这时,教师就请学生去进行动手操作活动,进而刺激其心理,促进他们实现学习心理的相互作用、互为转化——学到新知识。
  例如,教学“圆的周长”,学生引起心理反映:只能测量、计算直线图形的周长,用什么方法来得到曲线图形的周长呢?这时,教师就可要求学生分组进行操作活动,以满足他们的心理对行为的要求:1元硬币、瓶盖、飞碟等的直径与相应的圆周长分别是多少?并把得到的结果记入下表:

  测量曲线图形的周长,学生还是第一次,可是当学生看到事先准备好的线、绳和直尺,他们借助对图形周长概念的理解,首先还是想出了用测量的办法求圆的周长:有些学生用线绕测量物一周,再拉直放在直尺上量得其周长;有些学生将测量物在直尺上滚一圈测得其周长。学生的测量活动(行为)反过来又必将引起其心理活动,所以,教师这时可要求学生对测量的结果进行思维活动:从所填的表格中你们能发现什么规律?
  当学生无知识基础可作学习新知识的支撑点时,教师可直接请学生进行多次的操作活动,以不断刺激其心理,引起思维活动,从而达到理解新知的目的。例如,正、负数的加法:
(+3)+(-2)=+1+2-2=+1

  4.观察活动。所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。
  “乘法分配律”的教学,根据例证得到三个等式:
  (5+3)×2=5×2+3×2
  (6+4)×30=6×30+4×30
  (25+9)×4=25×4+9×4
  教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?
  教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。
  低年级学生观察时更需要意志力参与。教学“几个和第几个”时,教师请小朋友仔细看主题图:有几个人排队上公共汽车?小明排在第几个?教师在示范时又提醒学生:看谁看得认真,第一行从左边起老师涂色了几只?第二行从左边起第几只涂了色?然后,教师写上“3只”、“第3只”。

  教师运用语言的调节功能,激励低年级学生有意识地进行观察,这样能有效地促进学生心理转化,学到新知识。
  5.思考活动。所谓思考是指学习者对学习对象进行比较深刻的、周到的、复杂的思维活动过程。

作者: 吕长敏    时间: 2008-12-28 11:47
标题: 关于小学低年级应用题的思考与探索
从应用题教学的发展过程看,低年级应用题是整个应用题教学的基础,其中最主要的是简单应用题教学。由于小学生的抽象概括能力差,即使“朗朗上口”也不一定能掌握它的解法。有些学生在解答应用题时,学过的就不加思索的做出来,如果稍加改动就不知如何下手,要改变这种情况,就要求教师在平时加强“双基”教学的同时,抓好三方面的工作:
  一、教学生学会审题,培养学生认真审题的习惯
  应用题的难易不仅取决于数据的多少,往往是由应用题的情节部分和数量关系交织在一起的复杂程度所决定。同时题目中的叙述是书面语言,对低年级学生的理解会有一定的困难,所以解题的首要环节和前提就是理解题意,即审题。
  读题必须认真,仔细。通过读题来理解题意,掌握题中讲的是一件什么事?经过怎样?结果如何?通过读题弄清题中给了哪些条件?要求的问题是什么?实践证明学生不会做,往往缘于不理解题意。一旦了解题意,其数量关系也将明了。因此,从这个角度上讲理解了题意就等于题目做出了一半。当然还要让学生学会边读边思考。
  二、加强数量关系的分析与训练
  数量关系是指应用题中已知数量与已知数量,已知数量与未知数量之间的关系。只有搞清楚数量关系才能根据四则运算的意义恰当的选择算法,把数学问题转化成数学式子,通过计算进行解答。因此,低年级教学中简单应用题的数量关系,实际上是四则运算的算理与结构。所以从应用题教学的一开始就要着重抓好分析数量关系这一环。
  为此,首先要重视教学中的分析与说理。这是因为不仅要通过数量关系的分析找出解答的计算过程,同时计算过程本身也反映了解题的算理。所以要重视教给学生联系运算意义,把应用题中叙述的情节语言转换成数学运算,在理解的基础上用学生自己的语言叙述。对每一道题的算法,教师都要认真说理,也要让学生去说理,使学生能够将数量关系从应用题的情节中抽象出来纳入到已有的概念中去。
  例如在教学求两数相差多少,求比一个数多几(或少几)的数的应用题时,通过学生操作和教师直观演示,使学生明确:甲数比乙数多,那么甲数就包括两部分,其中一部分和乙数同样多,另一部分是比乙数多的部分,从甲数里去掉和乙数同样多的部分,剩下的就是比乙数多的部分,所以用减法计算。这样教学使学生对应用题的数量关系比较清楚,掌握了一类问题的分析思路,从而避免小学生仅仅依靠对题中某些词语的臆断或盲目尝试来选择算法。既培养了学生的解题能力,又初步发展了学生的分析、推理能力,为今后解更复杂的应用题打下基础。
  其次要重视简单应用题基本结构的教学。使学生明确简单应用题由两个已知条件和一个问题组成,缺少条件要补条件,缺少问题要补问题才能构成一道完整的应用题,同时条件与条件,条件与问题之间要有一定的联系。教学时可以进行提问题,填条件的练习。通过训练,使学生看到相关联的两个条件能提出问题,看到一个问题一个条件就能意识到还要补充什么条件。这一训练还可以使学生加深对应用题数量关系的认识,也为今后教学复合应用题提出中间问题做准备。
  例如:第三册有这样两个题:
  1.40个同学去检查身体,每5个同学一组,_____?
  2.小丽做了20朵红花,____。每个同学分得几朵?
  使学生明白:根据总数、份数可求出每份数;根据总数、每份数可求出份数,清楚意识到每份数必须和份数对应。通过独立思考、分组讨论,激发了学生的学习兴趣。
  另外,要注意使学生切实掌握解题思路。解题思路是指解答应用题的思考线索。只有切实掌握解题思路才能做到思维有方向、解题有依据,使小学生的思维逐步能够借助表象和概念进行。能在已有知识经验的基础上进行一些较复杂的判断。
  例如:在学生掌握了“大数=小数+相差数”,“小数=大数-相差数”这两个关系式后进行对比练习:
  1.小明有28本书,小明比小华多6本,小华有多少本?
  2.小明有28本书,小明比小华少6本,小华有多少本?
  3.小明有28本书,小华比小明多6本,小华有多少本?
  4.小明有28本书,小华比小明少6本,小华有多少本?
  5.小华有28本书,小华比小明少6本,小明有多少本?
  6.小华有28本书,小华比小明多6本,小明有多少本?
  7.小华有28本书,小明比小华多6本,小明有多少本?
  8.小华有28本书,小明比小华少6本,小明有多少本?
  这八道题看似很简单,如果要想全对,也不是件容易的事,教师要鼓励学生讲出自己的想法,掌握思考分析方法,让他们能尝试到胜利的喜悦,从而增加他们分析问题的信心。通过这个练习使学生知道,分析数量关系是正确解答应用题的关键,并且学会如何把条件和问题,按叙述的情节转变为数学运算。
  同时还要重视解题基本方法的训练。一道应用题呈现在学生面前如何根据已知条件确定解法,这需要运用各种思维方法进行探索。由因导果的综合法和执果索因的分析法是最基本的两种逻辑方法,采用这两种方法探索的关键在于确定正确的方向。教学中要抓好这两种基本方法的训练,明确它们的区别和联系,引导学生掌握解决问题的途径、方法和步骤。课本中不同数量关系的对比的出现也有利于这两种基本方法的掌握。
  例如第四册开始接触两步计算的应用题。一开始由教师提出问题,引导学生思考,避免包办代替,注意指导学生复述思考过程。在练习时试着让学生自己去模仿思考,比较完整地叙述解题思路。遇到应用题尽量让学生自己去思考,然后集体分析讨论,使出错的学生明白错在何处,别人是怎样分析的,把别人的思维过程作为研究的对象,学着分析。总之,分析能力的培养是一点一滴进行的,切忌操之过急,教师要注意帮助学生去归纳、总结,久而久之,学生的分析能力也就得到了提高。
  三、帮助学生掌握正确的解题步骤
  在小学虽然概括解题步骤是在学习了复合应用题时才进行的,但低年级开始应用题教学时就要注意引导学生按正确的解题步骤解答应用题,逐步养成良好的习惯,特别是检查验算和写好答案的习惯。
  一道题做的对不对,学生要能自我评价,对的强化,不对的反馈纠正,这实际上是一个推理论证的过程。完成列式计算只解决了“怎样解答”的问题,而推理论证是解决“为什么这样解答”的问题。然而低年级学生不善于从已知量向未知量转化,有时又受生活经验的制约无法检验明显的错误,因此,一要教给学生验算的方法,如:联系实际法、问题条件转换法和另解法等;还可以先由师生共同完成,然后过渡到在教师指导下学生进行,最后发展成学生独立完成。
  在教学中还经常遇到学生不重视写答案,只写“是多少”就算完了的现象。答案实际上是很重要的,是一件事情的结束。我们做事强调有好的开端,也得有好的结束,那才是一件完整的事,我们做题就同做工作一样,应该有完美的结束。因此,不仅要使学生重视写答案,还要使学生学会写答案。
  总之,从应用题教学的发展来看,低年级应用题教学是整个应用题教学的基础,学生在这个阶段学习中对应用题的结构、基本数量关系和解题思维方法掌握的如何,都将直接影响以后应用题的学习,因此必须从基础抓起,做好低年级应用题的教学


作者: 吕长敏    时间: 2008-12-28 11:49
标题: 小学低年级数学教学激发学生学生兴趣
用形象生动的语言来激发学习兴趣。数学的教学内容较抽象、枯燥、无味,它没有形象生动的语言及生动的故事情节,不易引起学生对数学的学习兴趣。因此,在教学生认数和记数时,我采用具体形象的事物和一些有趣的故事来激发学生的兴趣。如:为了让学生记住数字1—9的字形,我教学生背诵顺口溜:“1象粉笔,2象鸭子,3象耳朵,4象小旗,5象钩子,6象口哨,7象银锄,8象葫芦,9象蝌蚪。”以此来帮助学生记住字形。通过这样的教学,赋予数学内容以一定的感情色彩,将数学的知识渗透到童话的故事中去,从而激发了学生对数学的学习兴趣。
  利用直观教具、操作学具、电化教学手段来激发学习兴趣。低年级的学生抽象思维能力较差,可是他们好动、好奇心强,对新奇动人的事物比较敏感。在教学过程中,我采用直观教具、电化教学及操作学具来激发学生的学习兴趣。如教“求一个数比另一个数多(少)几的应用题”时,让学生先摆10个三角形,然后在下面摆6个圆形,并向学生说明摆的时候要从左边起,把圆形和三角形一个对着一个地摆。教师问:“哪一行摆得多?看看第一行里的三角形哪一部分和圆同样多?请你们用手指画一画,同桌互相检查一下,看看画得对不对?再画出三角形比圆多的部分。”接着问:“同样多的有几个?三角形比圆多几个?”再启发学生想,三角形比圆多,三角形可以看成是哪部分组成的?多的部分是几个三角形?从而使学生直观地看出三角形多,圆少,三角形可以分成两部分:一部分是和圆同样多的部分,一部分是比圆多的部分,从而体会到多的数能分成两部分,为学习新知识做好铺垫。
  利用数学游戏来激发学生的学习兴趣。我在教小学低年级的学生时,选择一些符合教学内容的游戏来激发学生的学习兴趣,使学生能在轻松、愉快的气氛中巩固学到的数学知识。如复习“小数的减法”时,可让学生做“争当模范营业员”的游戏,教师一手拿着人民币,一手举着所购买的物品的价格卡,让学生算出要找回的钱,并写在练习本上,五次后评出模范营业员,这样促使学生进一步巩固学到的知识。
  采用启发式教学来调动学生学习的积极性。低年级学生自我控制的能力较差,注意力不能持久。根据这一特点,我在教学过程中及时、巧妙地提出一些富有启发性的问题,让学生进行思考回答,从而集中注意力。同时,对学生准确回答的问题加以肯定,对不懂回答问题的学生给予启发引导并加以鼓励,从而调动了他们的学习积极性。
  采用灵活多变的教学方式来激发兴趣。低年级学生容易产生“喜新厌旧”的情绪,在教学中我采用灵活多样的形式、方法进行教学,给学生以新异感,让学生对数学产生浓厚的兴趣。如:通过讲故事、设问或复习旧知识引入新课,用电化教学、直观教具、数学游戏、课堂提问、练习形式多样化……等方法,使学生不会产生厌烦感,从而提高对数学的学习兴趣,并保证数学教学的顺利进行。

作者: 吕长敏    时间: 2008-12-28 11:50
标题: 小学数学学习的思考方法
一、数形结合的思想方法
    数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
    例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
  二、集合的思想方法
    把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
    如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
  三、对应的思想方法
    对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
    如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
  四、函数的思想方法
    恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
    函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。
  五、极限的思想方法
    极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
    现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
  六、化归的思想方法
    化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。
    如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。
  七、归纳的思想方法
    在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
    如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
  八、符号化的思想方法
    数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
    人教版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□ ○ □ = □ (个)。
    符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此 ,教师在教学中要注意学生的可接受性。
  九、统计的思想方法
    在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
    小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

作者: 吕长敏    时间: 2008-12-28 11:51
标题: 数学阅读技巧
一、阅读引言
  1.要注意章节标题,因为它标出了课文主题;2.要注意理解段落大意,弄明白引入新知识的直观素材;3.要抓住关键字、词、句和重要结论,这对于理解新知识非常重要。
  二、阅读概念
  1.要正确理解概念中的字、词、句,能正确进行文字语言,图形语言和符号语言的互译;2.要注意联系实际找出正反例子或实物;3.要弄明白概念的内涵和外延,就是说既能区分相近的概念,又能知道其适用范围。
  三、阅读定理
  1.要注意分清定理的条件和结论;2.要探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;3.要注意联系类似定理,进行分析比较、掌握其应用;4.要思考定理可否逆用,推广及引伸。
  四、阅读公式
  1.要弄明白公式的来龙去脉,会推导公式;2.要明白公式的特征并能想法子记住;3.要注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、逆用、合用,变用和巧用。
  五、阅读例题
  1.要认真审题,分析解题过程的关键所在,尝试解题;2.要和课本比较解法的优劣,并使解题过程的表达既简捷又符合书写格式;3.要注意总结解题规律并努力去探求新的解题途径。

作者: 吕长敏    时间: 2008-12-28 11:52
标题: 数学中的记忆
记忆能力是掌握基础知识,形成基本能力的基础。如果没有较强的记忆能力,那么,观察能力,想象能力,思维能力,创造能力都不会得到很好的展示。所以就更体现了重视记忆能力培养的重要性。
  首先,要培养学生掌握一些科学的记忆方法。如:口诀记忆法、图象记忆法、联想记忆法、系统记忆法、类比记忆法、规律记忆法等。但各种好的记忆方法、都是建立在对知识内容真正理解的基础之上的,要做到真正的理解,必须自己勤动脑、勤思考、勤动手,多做多练,对学过的知识从不同的侧面进行概括、归纳、整理,把它真正变成自己的知识,这样获得的知识才能记得又准、又快、又牢、又活,达到触类旁通,灵活运用的效果。
  其次,要结合记忆的方法,有计划、有目的地培养学生,训练学生进行记忆并进行应用。
  譬如,在学习《角》这一内容时,采用如下记忆方法:
  理解记忆法。如直线与平角的概念,重点理解它们的区别:直线是一条线,无端点及顶点,而平角是一个角,平角有顶点和内部,而直线没有。
  规律记忆法。如周角、平角、直角,只要牢记其中的一个大小,在记住它们的倍数关系,其他两个角的大小也就记牢了。结合图形特征记忆,如角平分线概念,每当看到角平分线的字样,头脑中便显现出图形,就十分容易记住他们的两个本质特征:(1)是一条射线,且以角的顶点为端点,在这个角的内部;(2)把这个角分成相等的两个角。这些方法都有利地培养了学生的记忆能力。

作者: 吕长敏    时间: 2008-12-28 11:53
标题: 解答应用题的一般步骤
1.审题
  所谓审题,就是理解题意。看到一道应用题,要反复默读,弄清已知条件和提出的主要问题。
  2.分析数量关系
  分析数量关系就是指题目中已知数量和未知数量及所求问题之间的相互关系。如某班有男生27人,有女生22人,问该班共有学生多少人?其数量关系是加数与和之间的关系。如果问,男生是女生的多少倍?则数量关系就是倍数比的关系。在应用题中,有的题数量关系简单,很容易弄清,有的题则数量关系复杂,这就需要对已知条件中所有的数量进行综合分析,只有弄清数量关系,才能找到解题途径。
  3.列式解答
  依据分析得到的数量关系,列出算式,算出结果。
  4.验算并写出答案
  检验解答过程是否合理,结果是否正确,与原题的题意是否相符,然后写出答案。
  检验的方法:
  (1)估算。看一看计算的结果是否合乎情理。应用题来自生产、生活实际,数据一般都要符合实际情况,如果发现计算结果与实际不符,就要检查题目是不是做错了。
  (2)代入。把算出的结果当作已知条件,按照题目中的数量关系代入运算,检查所得的结果是否与原题已知条件相符。
  (3)另解。验算时,如果能采用另一种解法,可以比较两种方法所得结果的情况。如答案一致,就验证了解答正确。
  上面说的应用题的解答步骤是一般规律,可以概括一般的解题思考过程和计算过程。在实际解答时,要具体问题具体分析,如果没有特别明确的要求,这几个步骤不必都写出来,只要正确地列出算式,求出结果,写出答案就可以了。

作者: 吕长敏    时间: 2008-12-28 11:54
标题: 让生活问题走进数学课堂
数学来源于生活,又应用于生活中。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述。课程标准十分强调数学与现实生活的联系,不仅要求教材必须密切联系学生生活实际,而且要求:“数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动 ,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。”使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。

    在教学过程中如何创设良好的学习环境,让生活问题走进数学课堂?我认为可以从以下几个方面来处理。

一、结合生活实际,合理组织教材,提高学生用数学思想看待实际问题的能力。

    数学教育是要学生获得作为一公民所必须的基本数学知识和技能,为学生终身可持续发展打好基础。因此,课堂教学中必须开放小教室,把生活中的鲜活问题引入学习数学的大课堂,吸收并引进与现代生活、科技等密切相关的具有时代性、地方性的数学信息资料来处理教材、整理教材、重组教材内容。例如我在教学“列方程解应用题”时,围绕“今天我当家”这样一个主题,根据当家必须买菜、做饭、打扫卫生等具体事情,结合钱、时间、如何安排等具体事情,设计了一系列的方程应用题:如何统筹安排买菜做饭的时间、买菜的时候用同样的钱可以买哪些不同的菜……这样就把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,使学生积极主动地投入学习生活中,让学生发现数学就在自己身边,从而提高了学生用数学思想来看待实际问题的能力。

二、注重实践活动,培养学生发现数学问题的能力

    为了让学生在学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系和区别。例如,在教学“利息和利率”这一课时,可以利用活动课的时间带学生到银行去参观,并以自己的压岁钱为例,让学生模拟储蓄、取钱等活动,观察银行周围环境,特别要记录的是银行的利率。学生记的时候就开始产生问题了:“利率是什么啊?”“为什么银行的利率会不同啊……”。对于学生的这些问题可以先不回答,而是表扬他们观察的很仔细,然后就让他们带着问题去预习新课。到上课的时候,由于是自己发现问题,自己来解决问题,从而找到符合实际需要的储蓄方式,这样培养了学生养成留心观察周事物、有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。

三、创设生活情境,提高学生解决问题的能力

    数学教材中的问题多是经过简单化或数学化了的问题,为了使学生更好地了解数学的思考方法,提高学生分析问题、解决外呢体的能力,教师必须善于发现和挖掘生活中的一些具有发散性和趣味性的问题。例如在教学工程问题之后,可以出一道这样的题目:陈老师带了一些钱去买一套上、下两册的书,他带的钱如果只买上册,恰好能买20本,如果只买下册恰好能买30本。那么他带的钱能买几套这样的丛书?这道题目突破了常规“工程问题”的命题方式,提高了命题的趣味性和生活性,学生在思考这类问题的时候,就要举一反三,学以致用,从而提高了解决问题的灵活性。

    总之,数学问题解决的方法很多,他们之间既有联系也有区别,教学中教师应该结合生活实际,抓住典型事例,教给学生思考的方法,让学生真正体会到数学学习的趣味性和实用性,让数学课堂教学适应社会生活实际,从而培养出一批真正适应未来社会需要的人才。

作者: 吕长敏    时间: 2008-12-28 11:55
标题: 从口算入手提高计算能力
纵观全国小学数学试题,涉及计算内容的题目在一份试卷中均占85%以上。从这个意义上说,加强计算教 学,有效地提高计算的正确率是小学数学教学的一个非常重要方面。教学情况表明,一个学生的计算正确率的 高低,与他口算能力的强弱是成正比例的。因此,如何提高口算能力,是值得探索研究的。本人在多年的教学 中,实行分类指导,加强训练,循序渐进,从提高口算能力来达到提高计算的正确率,取得较为理想的效果。 主要做法是:
    一、基础性训练
    从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一 位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到 的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的 练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及 智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一 组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生 先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率 也就大大提高了。
    二、针对性训练
    小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出 差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运 算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每 种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。
    1.两个分数,分母中大数是小数倍数的。
    如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分 母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算 :
    1/12+1/3=1/12+4/12=5/12
    2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积 的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。
    如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16)。
    3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。
    以上三种情况在带分数加减法中口算方法同样适用。
    三、记忆性训练
    高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的 无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:
    1.在自然数中10~24每个数的平方结果;
    2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;
    3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。
    以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能 力,在计算时产生高的效率。
    四、规律性的训练
    1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结 合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。 在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可 以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变 性质的运用等。
    2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。
    3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积 的口算,就是两位数再加上它的一半。
    五、综合性训练
    1.以上几种情况的综合出现;
    2.整数、小数、分数的综合出现;
    3.四则混合的运算顺序综合训练。
    综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。
    当然,以上这些情况,要使学生熟练掌握,老师首先要娴熟运用自如,指导时才能得心应手,提高效果。 同时训练应持之以恒,三天打渔两天晒网,是难以收到预期效果的。


作者: 吕长敏    时间: 2008-12-28 11:57
标题: 从口算入手提高计算能力
纵观全国小学数学试题,涉及计算内容的题目在一份试卷中均占85%以上。从这个意义上说,加强计算教 学,有效地提高计算的正确率是小学数学教学的一个非常重要方面。教学情况表明,一个学生的计算正确率的 高低,与他口算能力的强弱是成正比例的。因此,如何提高口算能力,是值得探索研究的。本人在多年的教学 中,实行分类指导,加强训练,循序渐进,从提高口算能力来达到提高计算的正确率,取得较为理想的效果。 主要做法是:
    一、基础性训练
    从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一 位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到 的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的 练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及 智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一 组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生 先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率 也就大大提高了。
    二、针对性训练
    小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出 差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运 算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每 种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。
    1.两个分数,分母中大数是小数倍数的。
    如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分 母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算 :
    1/12+1/3=1/12+4/12=5/12
    2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积 的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。
    如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16)。
    3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。
    以上三种情况在带分数加减法中口算方法同样适用。
    三、记忆性训练
    高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的 无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:
    1.在自然数中10~24每个数的平方结果;
    2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;
    3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。
    以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能 力,在计算时产生高的效率。
    四、规律性的训练
    1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结 合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。 在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可 以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变 性质的运用等。
    2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。
    3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积 的口算,就是两位数再加上它的一半。
    五、综合性训练
    1.以上几种情况的综合出现;
    2.整数、小数、分数的综合出现;
    3.四则混合的运算顺序综合训练。
    综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。
    当然,以上这些情况,要使学生熟练掌握,老师首先要娴熟运用自如,指导时才能得心应手,提高效果。 同时训练应持之以恒,三天打渔两天晒网,是难以收到预期效果的。


作者: fffff    时间: 2009-2-1 11:20
bmingbai




欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2