绿色圃中小学教育网
标题:
华师大版初一数学下册《小结与复习》导学案PPT课件教学设计公开课实录
[打印本页]
作者:
admin
时间:
2012-2-12 22:38
标题:
华师大版初一数学下册《小结与复习》导学案PPT课件教学设计公开课实录
华师大版初一数学下册《小结与复习一》导学案PPT课件教学设计公开课实录
小结与复习(一)
教学目的
了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透“转化”的思想方法。
重点、难点
1.重点:一元一次方程的解法。
2.难点:灵活运用一元一次方程的解法。
教学过程
一、复习提问
定义:只含有一个未知数,且含未知数的项的次数1的整式方程。
一元一次方程 解法步骤:去分母、去括号、移项、合并同类项、
系数化为l,把一个一元一次方程“转化”成x=a“的形式。
二、练习
1.下列各式哪些是一元一次方程。
(略)
2.解下列方程。
(1)(x一3)=2一(x一3)
(2) [(x一3)-]=1-x
学生认真审题,注意方程的结构特点。选用简便方法。
第(1)小题,可以先去括号,也可以先去分母,还可以把x一3看成一个整体,解关于x一3的方程。方法—:去括号,得x—3=2—x+ 3
移项,得x+x=2+3+3
合并同类项,得 x=5
方法二:去分母,得 x一3=4一x+3
(强调等号右边的“2”也要乘以2,而且不要弄错符号)
移项,得 x+x=4+3十3
合并同类项,得 2x=10
系数化为1,得 x=5
方法三:移项 (x一3)+(x一3)=2
即 x一3= 2
∴ x=5
第(2)小题有双重括号,一般情况是先去小括号,再去中括号,但本题结构特殊,应先去中括号简便,注意去中括号时,要把小括号看作一个整体,中括号里先看成2项。
解:去中括号,得(x一3)一×=1一x
即 x一3一=1一x
移项,得 x+x=1+3+
合并同类项,得x=
系数化为1,得 x=
也可以让学生先去小括号,让他们对两种解法进行比较。
3.解力程。
(l) —=l+
(2)—x=+l
解:(1)去分母,得 3x一(5x十11)=6+2(2x一4)
去括号,得 31—5x—11=6+4x一8
移项,得 3x一5x—4x=6—8十1l
合并同类项,得 一6x=9
系数化为l,得 x=一
点拨:去分母时注意事项,右边的“1"别忘了乘以6,分数线有两层含义,去掉分数线时,要添上括号。
(2)先利用分数的基本性质,将分母化为整数。
原方程化为 一x=x十l
去分母,得 2(10—5x)一4x=90x+6
去括号,得 20一l0x一4x=90x+6
移项,得 一l0x一4x一90x=6—20
合并同类项,得 一104x=一14
系数化为1,得 x=
点拨:“将分母化为整数”与“去分母”的区别。本题去分母之前,也可以先将方程右边的约分后再去分母。
4.解方程。
(1)|5x一2|=3
(2)||=1
分析:(1)把5x一2看作一个数a,那么方程可看作|a|=3,根据绝对值的意义得a=3或a=一3
(2)把看作一个数,或把||化成||
解:(1)根据绝对值的意义,原方程化为:
5x一2=3 或5x一2=一3
解方程 5x一2=3 得 x=l
解方程 5x一2=一3 得 x=-
所以原方程解为:x=1或x=-
(2)根据绝对值的意义,原方程可化为
=1或 =-1
解方程=1 得x=一1
解方程=-1 得x=2
所以原方程的解为x=一1或x=2
5.已知,|a一3|+(b十1)2 =o,代数式的值比b一a十m多1,求m的值。
解:因为|a一3|≥0 (b+1)2≥0
又|a一3|+(b十1)2 =0
∴|a一3|=0 且(b+1)2 =0
∴ a-3=0 b十l=0
即a=3 b=一1
把a=3,b=一1分别代人代数式 , b-a+m
得=
×(一1)一3+m=一3+m
根据题意,得 一(-3十m)=l
去括号 得 +3一m=1
即 一+-m=l
∴ -十l=1
∴ -=0
∴ m=0
6.m为何值时,关于x的方程4x一2m=3x+1的解是x=2x一 3m的2倍。
解:关于;的方程4x一2m=3x+1,得x=2m+1
解关于x的方程 x=2x一3m 得x=3m
∵根据题意,得 2m+l=2×3m
解之,得 m=
三、小结
在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,但基本思路都是把“复杂”转化为“简单”,把“新”转化为“旧”,求出解后,要自觉反思求解过程和检验方程的解是否正确。
四.作业
1.教科书第21复习题A组第1、2 B组9、10选做C组13、14。
作者:
admin
时间:
2012-2-12 22:38
小结与复习(二)
教学目的
使学生进一步能以一元一次方程为工具解决一些简单的实际问题,能借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题的能力。
重点、难点
1.重点:运用方程解决实际问题。
2.难点:寻找等量关系,间接设元。
教学过程
一、复习
列一元一次方程解应用题的步骤。
二、新授
例1.为了准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。
(1)直接存一个6年期,年利率是2.88%;
(2)先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是2.7%。
你认为哪种储蓄方式开始存人的本金比较少?
分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出这两种储蓄方式开始存人多少元,然后再比较。
设开始存入x元。.
如果按照第一种储蓄方式,那么列方程:
x×(1十2.88%×6)=5000
解得 x≈4263(元)
如果按照第二种蓄储方式,
可鼓励学生自己填上表,适当时对学生加以引导,对有困难的学生复习:本利和=本金十利息
利息:本金X利率X期数
等量关系是:第二个3午后本利和=5000
所以列方程 1.081x•(1十2.7%×3)=5000
解得 x≈4279
这就是说,大约4280元,3年期满后将本利和再存一个3年期,6年后本利和达到5000元。
因此第一种储蓄方式<即直接存一个6年期)开始存人的本金少。
例2.解答下列各问题:
(1)据《北京日报》2000年5月16日报道:北京市人均水资源占有300立方米,仅是全国人均占有量的,世界人均占有量的,问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
(2)北京市一年漏掉的水相当于新建一个自来水厂,据不完全统计,全市至少有6×l05个水龙头,2×l05个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a立方米水,一个漏水马桶,一个月漏掉 b立方米水,那么一个月造成的水流失量至少有多少立方米?(用含a、 b的代数式表示)
(3)水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费 22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米?
三、巩固练习
1.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存入了多少元?
2.一收割机收割一块麦田,上午收了麦田的25%,下午收割了剩下麦田的20%,结果还剩6公顷麦田未收割,这块麦田一共有多少公顷?
3.儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿子年龄的 4倍吗?
四、小结
本节课我们复习了利用一元一次方程解决实际问题,方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找到“等量关系”,在寻找等量关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。
五、作业
1.教科书第21页复习题A组第3、4、5、6、7、8。B组11、12选做 C组15、16。
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2