“变量与函数”教学设计 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
山东惠民皂户李乡中学 康风星 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
一次函数的图象 |
昌邑市龙池初中 李艳梅 |
一、教材的地位和作用 本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。 (一)教学目标的确定 教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。 1、知识目标 (1)能用“两点法”画出一次函数的图象。 (2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。 2、能力目标 (1)通过操作、观察,培养学生动手和归纳的能力。 (2)结合具体情境向学生渗透数形结合的数学思想。 3、情感目标 (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。 (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。 (二)教学重点、难点 用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。 二、学情分析 1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。 2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。 3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。 三、教学方法 我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。 四、教学设计 一、设疑,导入新课(2分钟) 师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗? 生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。 生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。 生3:正比例函数也是一次函数。 师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 这节课让我们一起来研究 “一次函数的图象”。(板书) 二、自主探究——小组交流、归纳——问题升华: 1、师:问(1)你们知道一次函数是什么形状吗?(4分钟) 生:不知道。 师:那就让我们一起做一做,看一看:(出示幻灯片) 用描点法作出下列一次函数的图象。 (1) y= 0.5x (2) y= 0.5x+2 (3) y= 3x (4) y= 3x + 2 师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确? 然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状? 小组汇报:一次函数的图象是直线。 师:所有的一次函数图象都是直线吗? 生:是。 师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书) 师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟) 讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。 小组1:正比例函数图象经过原点。 小组2:正比例函数图象经过原点,一般的一次函数不经过原点。 师出示幻灯片3(使学生再一次加深印象) 师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法? (一边思考,可以和同桌交流)(2分钟) 生1:用3个点。 生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛! 生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。 师:我们都认为画一次函数图象,只过两个点画直线就行。 (幻灯片4:师,动画演示用“两点法”画一次函数的过程) 师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟) 师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些? 组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。 组2:我们组认为尽量都找整数。 组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0) 组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。 师:同学们说的都很好。我觉得可以根据情况来取点。 2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢? 问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟) ①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。 生1:①y=0.5x与y=0.5x+2;两直线平行。 生2:②y=3x与y=3x+2;两直线平行。 生3:③y=0.5x与y=3x;两直线相交。 生4:④y=0.5x+2与y=3x+2;两直线相交。 师:其他同学有没有补充? 生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。 生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。 师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。 师:问(2),直线y=kx+b(k≠0)中常数k和b的值对于两个函数的图象的位置关系——平行或相交,有没有影响?说说你的看法。(5分钟) (学生自主探究——小组交流、归纳——师生共同总结) 组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系——平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。 生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗? 组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。 组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。 师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力! 师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答) 生:重合。 师:老师考一考你,有没有信心? 生:有。 师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗? ①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。 生1:①两直线平行。②两直线相交,交点是(0,-3)。 生2:①两直线平行。②两直线相交,交点是(0,-3)。 师:一次函数的图象都是直线,它们的形状都 ,只是位置 。 问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索——同桌交流)(3分钟) 生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。 生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。 生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。 师:同学们规律找得都很好,我们这节课只研究平移。 问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟) (学生动力操作尝试——小组交流归纳——小组汇报) 组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。 组2:直线y=3x向上平移2个单位能得到直线y=3x+2。 组3:直线y=3x+2向下平移2个单位能得到直线y=3x。 生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。 生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。 师:(同学们说的都很好,生5的发现更好,) 师:出示幻灯片7,然后按↑↓来通过动画演示平行移动的过程。 问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟) 生1:k值不变,b值变化。 生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。 师:出示幻灯片7上的小规律。 做一做:(独立完成——小组交流—师生总结)(4分钟) (1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。 (2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。 (3)将直线y=-x-5向上平移6个单位,得到直线( )。 (4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。 组1汇报结果。 师:在这些问题中还有没有需要老师帮忙解决的? 生:没有。 三、你能谈谈你这节课的收获吗?(2分钟) 生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k≠0) 我还学会了用“两点法”画一次函数的图象。 生2:我觉得学习一次函数,既离不开数,也离不开图形。 生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。 生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。 …… 四、测一测:(6分钟) 师:老师觉得你们学的不错,你们认为自己学的怎么样? 生:好 师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组? 师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分) 一、填空:1、一次函数y=kx+b(k≠0)的图象是( ),若该函数图象过原点,那么它是( )。 2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。 3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( ) 4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。 5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。 二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( ) A、交于同一个点 B、互相平行 C、有无数个不同的交点 D、交点的个数与k的具体取值有关 7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( ) A、交于同一个点 B、互相平行的直线 C、有无数个不同的交点 D、交点个数的多少与b的具体取值有关 在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。 师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!) 师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。 师给予学生一定的时间,问:同学们对于这节课还有没有疑问? 生:没有。 四、作业: 在同一坐标系中画出下列函数的图象,并说出它们有什么关系? (1)y=2x与y=2x+3 (2)y=-x+1与y=-3x+1 五、课外延伸: 直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。 六、教后反思: 在本节课的教学中,我坚持以学生为主体,采用自主探究——小组合作、交流——问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透“数学形结合”的数学思想。每一个问题的解决我都坚持做到:给学生“自主探究问题”的机会;在学生想展示自己的做法时,给学生充足的时间让他们去“合作交流”;当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。 |
《等边三角形》教学设计 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
河北省围场县银窝沟中学 刘利云 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
《整式的加减》教学设计 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
河北省围场县三义永中学 刘迎春 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
教学任务分析
教学流程安排
教学过程设计
|
问题与情景 | 师生行为 | 设计意图 | |
活动3 问题 (1)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况? ①我们先来探究两个三角形三个角相等的情况: ②画出一个三角形,使它的三边长分别为3cm、 4cm、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗? (2)上面的探究反映了什么规律? | 教师先提出问题,引导学生回答出满足三个条件的四种情况,教师再明确探究的任务,指导学生画图探究,获取“SSS”的条件. 在画图中,教师可让学生试着画图,在让学生发现存在的问题,最后给出正确的画法. 本次活动中教师应重点关注: (1)学生能否根据条件正确的画出图形; (2)学生能否根据探究中发现的规律概括出结论“SSS”; (3)在阐述结论时,学生的语言是否规范; (4)学生是否掌握“SSS”的书写格式. | 让学生明确满足条件中的三个有哪几种情形,为以后的学习“SAS”、“ASA”、“AAS”做好准备. 以学生的画图活动为主线开展探究活动,注重“SSS”条件的发生过程和学生的亲身体验,从实践中获取“SSS”的条件,培养学生探索、发现、概括规律的能力. | |
活动4 问题 三角形的三边长度固定,这个三角形的形状大小就完全确定,你能解释其中的道理吗?你能说出生活中看到的例子吗? | 教师先提出问题,引导学生正确的回答问题. 教师指出:三角形的三边长度固定,这个三角形的形状大小就完全确定,这个性质叫三角形的稳定性. 让学生举出生活中的实例. 本次活动中教师应重点关注: (1)学生对“SSS”的理解; (2)学生能否发现生活中三角形稳定性的实例; (3)学生是否积极的思考问题. | 通过生活中的实例,让学生充分体验当三角形的三边确定后,三角形就唯一确定,加深对“SSS”的理解,使学生找到生活与数学之间的联系. | |
问题与情景 | 师生行为 | 设计意图 | |
活动5 问题 例1.如图, △ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,求证:△ABD≌△ACD 练习题:如图,AB=AD,BC=CD,求证:(1)△ABC≌△ADC(2)∠B=∠D 思考题:如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。 | 教师引导学生分析问题中的已知条件,以及两个三角形全等还需要的条件. 学生先独立思考,然后分析、讨论,小组间交流,教师板书过程. 本次活动中教师应重点关注: (1)学生能否找到已知条件和隐含的条件; (2)学生能否掌握解题的过程. 练习题学生独立分析,写出证明过程,教师点评. 练习中教师应重点关注: (1)学生对新知识的掌握程度; (2)学生的证明过程是否规范. 在独立思考的基础上,教师引导学生观察图形,寻找隐含条件,教师强调:已知条件包括两个部分,一是直接给出的,一是图形中隐含的. | 通过例题的讲解,引导学生分析、解题,培养学生的逻辑推理能力,学会运用“SSS”条件判断三角形全等. 通过练习,学生的板书,及时的发现存在的问题,培养的独立分析能力,会运用“SSS”条件判定三角形全等,规范学生的解题过程. 通过学生的独立思考,培养学生观察问题的能力和分析问题德能力,会从问题的条件出发,获得运用“SSS”条件所需要的条件. | |
活动6 小结 从本节课的学习中你有何收获? 布置作业 教科书103页习题13.2第1题,第2题. | 学生自我小结,相互补充,教师点评. 本次活动中教师应重点关注: (1)不同层次的学生对知识的理解程度,有针对性地给予指导; (2)对学生在练习中存在的问题,有针对性地讲解. | 通过小结,引导学生学会反思,通过独立思考,引导学生学会自我评价. 通过学生练习,及时地了解学习效果,调整教学安排. | |
《等边三角形(1)》教学设计 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
哈尔滨文府中学 张景波 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
"用扇形图描述数据"教学设计 | ||||||||||||||||||||||||||||||||||||||||
湖北省黄石市第八中学 范海进 | ||||||||||||||||||||||||||||||||||||||||
教学任务分析
教学流程安排
教学过程设计
|
"全等三角形"教学设计 | ||||||||||||||||||||||||||||||||||
广西北海六中 温夏霞 | ||||||||||||||||||||||||||||||||||
教学任务分析
教学流程安排
教学过程设计
|
等腰三角形判定的综合应用 | |||||||||||||
四川省乐山市市中区悦来中学 黄世桥 | |||||||||||||
教学过程 复习提问: 师:等腰三角形的判定定理有哪些? ①有两边相等的三角形叫做等腰三角形。(其定义是重要的判定) ②有两个角相等的三角形是等腰三角形。 ③一边上的中线、这边上的高线与这边所对的角的角平分线中任意两条线互相重合的三角形是等腰三角形。(三线合一的逆定理,当中包含三个定理) ④三个角相等的三角形是等边三角形。 新课过程 引例1 已知:如图,AD∥BC,BD平分∠ABC。 求证:AB=AD 分析:请大家思考。 大部分学生能做出来。 (等大部分学生能思考出来时,抽成绩差学生的说出解题过程,面向全体学生的体现之一) 师:要证明AB=AD,转化先证明∠ABD=∠ADB即可。我们要证明的两条线段若在两个三角形中,则思考的一个方向是去证明三角形全等。若这两条线段是在同一个三角形中,则一个思考方向是证明它是等腰三角形。 生:证明:∵BD平分∠ABC ∴∠ABD=∠DBC 又∵AD∥BC ∴∠ADB=∠DBC ∴∠ABD=∠ADB ∴AB=AD(等角对等边) 引例2 已知:如图,∠CAE是ΔABC的外角,∠EAD=∠DAC,AD∥BC。求证:AB=AC。 (留时间给学生观察思考) (班上大部分学生能做出来,处理如上题) 生:∵AD平分∠EAC ∴∠EAD=∠DAC 又∵AD∥BC ∴∠EAD=∠B ∠DAC=∠C ∴∠B=∠C(等角对等边) 分析:问:这两个题有什么共同之处? 生1:都出现了平行线,都出现了角平分线。 生2:都得到了一个等腰三角形。 生3:都利用了“等边对等角”。 生4:其证明的方法一样。 …… 师:刚才大家七嘴八舌说了很多,说得很好。 (至此课堂很活跃) 刚才我听到有的同学说很简单,我也这样认为这两个引例并不难,但难题来至于简单的组合,奥秘隐藏于简单之中,还要仔细分析,这两题能够给我们带来怎样的收获。 ①小题:出现: ②小题:出现: 问:这两个题有什么不同之处? 生:前者的平行线是平行于这个角的一边,后者的平行线是平行于这个角的角平分线本身。 师:这两个题的结论有什么相同之处? 生:在这两种情况下,都能得到一个必然的等腰三角形。 问:谁来总结一下这个规律? 生:当题目中出现有角平分线和平行线时,题目中要出现一个等腰三角形。以利于做题的推进。 (师插话:注意了,平行线是平行于这个角的角平分线本身,或者平行于这个角的一边)。 (学生记住一些小结论,做题时有利于迅速找到做题的方向,提高学生的数学素养) 生:这是个双胞胎图形。 师:说得很好的,在这里,第一个图形,其背上是一个等腰三角形,第二个图形,翻个个儿,其背上也是一个等腰三角形,因此我戏称为“背孩子的图形”。随便怎么记都行。 (学生大笑,笑声中学生记住了这个图形、这个结论,课堂气氛也比较轻松、活跃) 师:今后我们在解题时,就要有意识的向这个方向去想,要充分的利用好我们总结的规律,要在游泳中学会游泳,在战争中学会战争,(这是毛主席说的),在解题中学会解题,我们的思考能力才能越来越强大。能运用规律来解题,某种情况上说我们已经掌握了这个规律。 例 1 已知:如图,∠ABC、∠ACB的平分线相交于点F, ①过F作DE∥BC,交AB于点D,交AC于点E。求证:BD+EC=DE ②过F作FM∥AB交BC于点M,过F作FN∥AC交BC于点N。 求证:ΔFMN的周长=BC。 分析:学生读题,思考如何去做。 两、三分钟后,大部分学生已经能做出。 问:谁来给大家分析一下? 生5:由“背孩子图形”立即可得ΔBDF和ΔFEC是等腰三角形,由BD=DF,EC=EF。问题得证。 师:请每个同学写出过程。 证明:∵BF平分∠DBF, ∴∠DBF=∠FBC ∵DE∥BC ∴∠DFB=∠FBC ∴∠DBF=∠DFB ∴DB=DF 同理:EF=EC ∴DB+EC=DF+FE 即:DB+EC=DE 问:从刚才同学们完成①问,能够感受到规律的威力,第二问如何做? 生6:这个图形中,也有两个“背孩子图形”,可得FM=BM,FN=NC,问题得到解决。 师:今后,我们在思考问题时,按我们的规律进行思考,将大大推进我们对问题的思考。 例 2 已知:CE、CF分别平分∠ACB和它的外角,EF∥BC,EF交AC于点D,E是CE与AB的交点。 求证:DE=DF 分析:给大家5分钟的时间,认真思考。5分钟后请同学回答。(5分钟,全班已有超过一半的学生能做) 生7:这里面仍然包含有两个“背孩子图形”。 由出现了角平分线,和平行线,我们很容易得到ΔDEC和ΔDFC是等腰三角形,可得:ED=DC,DF=DC。 师:很好,请按规律思考。 (至此班上大部分学生已经掌握这题的思考规律,同时,理解了我们是如何运用规律的。这些规律不需要去背,学生已经留在了脑海中。) 解:∵FE∥BC ∴∠DEC=∠ECB 又∵CE平分∠ACB ∴∠ECB=∠ECD ∴∠DEC=∠DCE ∴DC=DE 同理:DC=DF ∴DE=DF 例 3 已知:如图,点D是∠ABC的角平分线与∠ACB的外角平分线的交点,DE∥BC,DE交AB于点E,交AC于点F。 求证:EF=BE-CF。 师:这题留给大家5分钟的时间思考。 生8:题目中出现有角平分线和平行线,思考找出题中的两个等腰三角形,能得到ΔEDB和ΔDFC是等腰三角形,有BE=ED,DF=CF,问题得到证明。 师:请大家写出证明过程。 证明:∵BD平分∠EBC, ∴∠DBE=∠DBC ∵DE∥BC ∴∠EDB=∠DBC ∴∠DBE=∠EDB ∴DE=BE 同理:CF=DF ∴EF=DE-DF=BE-CF 例 4 已知:如图,B、D分别在AC、CE上,AD是∠CAD的平分线,BD∥AE,AB=BC。求证:AC=AE。 分析:问:能自行解决吗? 生9:题中出现有角平分线和平行线,先找出等腰三角形ΔABD, 有AB=BD,又∵AB=BC, ∴有BC=BD, ∴∠C=∠CDB 又∵BD∥AE ∴∠CDB=∠E ∴∠C=∠E ∴AC=AE。 师:今后我们做题时,要善于多题归一,我们今天见识了善于发现不同题目中的规律,会给我们带来极大的帮助,增长我们的才能。 每课一招:每节课都把自己作导演,让学生做演员,让他们尽情的展示自己吧!把自己的光辉悄悄的隐没于学生的才能之中吧!(这样他们会越来越聪明,越来越喜欢学数学!) |
"课题学习从数据谈节水(第1课时)"教学设计 | |||||||||||||||||||||||||||||||||||
湖北省荆门市外语学校 吴青云 | |||||||||||||||||||||||||||||||||||
教学任务分析
教学流程安排
教学过程设计
点评 本课题学习是“从数据谈节水”,这节课是课题学习的第1课时——从资料中收集数据谈节水.这节课是在学完描述数据的几种统计图后开展的,为学生提供了利用图表描述数据的实践机会。通过这节课的学习可以使学生更加深刻地认识到各种统计图的不同特点和适用范围,锻炼学生从资料中收集数据研究问题的能力。 这节课始终以水为研究对象,以数据为研究工具,在用数据研究水的过程中培养学生用数学的能力和习惯.首先以水危机引出课题,然后利用数据研究水的分布和使用状况,最后又通过数据说明节约用水是大有可为的。整堂课结构紧凑,目标明确,内容现实有意义且富有挑战性,使学生始终能带着饱满的热情和强烈的好奇心参与到课堂中来。 本课时在教法学法上有两个特点:一是坚持以学生自主探索为主,让学生通过小组合作,全班交流自主拟定解题步骤,自主完成每一步骤,自主评析答案异同,这样有利于培养学生自主学习的能力;二是教师是学习的组织者、引导者与合作者,教师通过恰当的提出问题为学生指明努力的方向,通过参与学生的活动中以了解学生学习中的难点、疑点,通过组织讨论为学生提供充分交流取长补短的机会,通过适时鼓励恰当点评使学生感受学习的快乐。 课题学习是新教材中一项全新的内容,是与现实生活联系最为密切的一部分内容,是最能体现数学工具性学科的一部分内容,因此这节课贯穿始终的一个做法是:引导学生利用数学知识研究每一个现实问题,培养学生用数学的眼光观察事物、分析事物的习惯。 |
"一次函数与二元一次方程(组)"教学设计 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
湖北省襄樊市第十二中学 胡华 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
教学任务分析
教学流程安排
教学过程设计
点评 本节课安排了两个内容:一是探索一次函数与二元一次方程(组)的关系,这是本节的重点;二是综合运用函数与方程、不等式的关系解决简单的实际问题,这是本节的难点。 教师先让学生把一个具体的二元一次方程转化成一次函数,再通过画图来揭示二元一次方程与一次函数之间的关系,然后在同一坐标系中画出另一条直线,观察、思考得到二元一次方程组与一次函数之间的关系,进而得到二元一次方程组的解与两条直线交点坐标之间的关系,这些都为从函数的观点认识解方程组作好了铺垫。学生经历了前面的探究学习后,很自然从“形”的角度来认识解方程组。为了帮助学生从“数”的角度来认识解方程组,教师设计一个练习,先让学生体验再引导学生归纳结论,使学生的思维活跃起来。这种呈现知识的形式符合学生的认知规律。 在例题的教学中,教师引导学生分析题意,建立函数模型,然后让学生讨论交流比较大小的方法.对于利用图象比较大小的两种方法,第一种是教师让学生独立画图,分析比较,然后强调自变量的取值范围;对于第二种方法,教师着重引导学生作差得到一个新函数,并把要解决的问题设计成填空的形式,让学生结合画图分析完成。 这节课较好地体现了教材的编写意图,结合实际,不误时机地对学生进行“数形结合”思想方法的教学,并让学生在动口、动手、动脑的过程中体会四个“一次”之间的关系。教师注重知识形成过程的教学,突出学生活动这条主线,多媒体辅助教学应用自然,师生互动、生生互动,较好地体现了“以人为本”的教学理念。 (点评人:湖北省襄樊市教研室吴明龙) |
"全等三角形的条件"教学设计 | |||||||||||||||||||||||||||||||||||||||||||||||||
广西北海市第六中学 刘贵凤 | |||||||||||||||||||||||||||||||||||||||||||||||||
教学流程 教学过程
|
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) | Powered by Discuz! X3.2 |