绿色圃中小学教育网

标题: 八年级数学下册拓展资源 [打印本页]

作者: 今夕何夕    时间: 2008-6-28 06:51
标题: 八年级数学下册拓展资源
八年级下册拓展资源——拓展性问题


1. 如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离为2千米7千米,且张、李二村庄相距13千米。


1)水泵应修建在什么地方,可使所用的水管最短;请你在图中设计出水泵站的位置;


2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?





【答案与提示】1)、设张村、李庄分别为点AB,河边为直线l.作点A关于河边所在直线l的对称点A',连结A'BlP,则点P为水泵站的位置,此时,PA+PB的长度之和最短,即所铺设水管最短。(2)、过B点作l的垂线,过A'l的平行线,设这两线交于点C,则C=90°。又过AAE⊥BCE,依题意BE=5AB=13,∴ AE2=AB2BE2=13252=144。∴ AE=12。由平移关系,A'C=AE=12RtB A'C中, BC=7+2=9A'C=12,∴ A'B2=A'C2+BC2=92+122=225
A'B=15。∵ PA=PA',∴ PA+PB=A'B=15。∴ 1500×15=22500(元)答:


2. 如图2,是一个三级台阶,它的每一级的长宽和高分别为20dm3dm2dmAB是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面从A爬到B点的最短路程是______.





【答案与提示】将以阶面展开成长为20 dm,宽为15 dm的长方形,则AB间的最短距离即为直角三角形的斜边AB的长.所以AB=25 dm.


3. 在一个圆柱形的石凳子上,有一位小朋友吃东西留下一点食物在处,恰好一只机智的小蚂蚁路过处(的对面),它的触角准确的捕捉到了这个信息,于是它迫不及待地想从爬到(如图3),聪明的同学们,你们想想,蚂蚁怎样爬最近呢?





【答案与提示】这只蚂蚁从列举了四种途径,若将圆柱体的侧面沿AA'前开,再展开发现前三种都是折线,只有第四种从是一条线段,根据"两点间线段最短"可知蚂蚁沿第种路径最近。


4。于公元1世纪成书的我国数学经典著作《九章算术》第一章第6题是:今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。问水深、葭长各几何该题称为引葭赴岸问题。公元12世纪,印度著名数学家婆什迦罗在他的名著《丽罗娃提》中将该题编成一首诗歌,在中东和西欧国家广泛流传,成为著名的莲花问题,该诗为:平平湖水清可鉴面上半尺生红蓬出泥不染亭亭立忽被强风吹一边渔人观看忙向前花离原位两尺远能算诸君请解题湖水如何知深浅


【答案与提示】设水深为尺,则茎秆为尺,由勾股定理,得。解得,即湖水深尺。


5如图4,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货。此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60O方向移动。距台风中心200海里的圆形区域(包括边界)均会受到影响。(供选用数据:。)


1)问:B处是否会受到台风的影响?请说明理由。


2)为避免受到台风的影响,该船应在多少小时内卸完货物?





【答案与提示】如图9,(1)过点BBDACD,则BD=AB=×20×16=160<200,故B处会受到台风的影响。(2)在直线AC上取两点EF,使BE=BF=200,则DE=,所以AE=AD-DE= =(海里)。又(小时),故该船应在3.8小时内卸完货物。



作者: 今夕何夕    时间: 2008-6-28 06:52
标题: 回复: 八年级数学下册拓展资源
八年级下册拓展资源——四维的勾股定理


平方后等于负1的数称为虚数,用i表示。i的3倍记为3i、7倍记为7i,它们都是虚数。1与-1的平方都是1,平方为-1的数原本是没有的,虚数是在‘如果有的话’的前提下提出的概念。由实数和虚数组合成的数叫做复数,复变函数是专门研究复数的数学分支。假设在宇宙的最初(如同霍金所提倡的)时间是虚数,由于加速度为距离除以时间的平方,所以当时间为虚数时,力的符号变为负(反方向)。难以逾越的高墙反过来变成了深深的堑壕,在力学上势能(位置能)的符号发生了变化,封闭着能量的口袋在一瞬间消失,从而揭开了宇宙大爆炸的序幕,在此瞬间里时间由虚变实,变成了通常的膨胀。


关于大爆炸以前的虚时间难于讲解,示意图也画不出来的,普通的时间尚无法看见,更别提看见虚时间了。我们的意识在一定程度上能够推定时间的经过,如果这时间是虚时间的话将会怎样呢?谁也说不出来。霍金为了避开奇点用数学公式表示了时间的连续性,但是他却回避不了大爆炸前的虚时间。


虚时间的提出,消除了宇宙创生于奇点的困惑。接下来,笔者用比较易懂的狭义相对论的公式,再对虚时间进行一些讲解。


狭义相对论认为,光速是不变的,长度及时间随测量方法的不同而不同,时间与长度具有同等的资格。因此狭义相对论的公式是四维公式。


x、y、z为三维空间坐标的互相垂直的三个轴,t为时间。为了使时间成为用长度表示的维,把时间与光速c的乘积ct作为代表第四维的轴。假定光从A点出发沿直线(按狭义相对论观点)到达B点,所需时间为t,则AB间的直线距离为ct。一般地说,时间轴与x、y、z轴中的任何一个轴都不是互相垂直的,长度ct中含有各个轴的成份,光走过的距离ct相当于以x、y、z为三边的立方体的对角线之长,满足三维勾股定理(如图),。也可以写成





如果将相对论的时间记述为三维空间里的一维时间的话,-(ct)2与x2、y2、z2之和总应该为零。请注意:在数学处理上必须不带任何区别地看待时间与空间。四维几何学很难用我们的常识去理解,在四维几何学里从一开始就把ct作为一个独立的坐标,而不是光传播于x、y、z三维空间里……。四维空间中的距离并不一定为零,而是一个定数,四个维的平方之和表示四维超立方体对角线的平方(称为扩张的勾股定理),即在四维几何学中,时间与空间之间存在下述关系:S是个定值,与光从AB的过程有关。


这个公式是四维时空间里的物理学公式。在原来的勾股定理中,各边的平方均为正值,只有与时空间有关的时间项的平方为负值,也就是把-(ct)2看作是加上一个负的项。



作者: 今夕何夕    时间: 2008-6-28 06:52
标题: 回复:八年级数学下册拓展资源

八年级下册拓展资源——勾股定理与第一次数学危机  







在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数的诞生。小小的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。



二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。



作者: 今夕何夕    时间: 2008-6-28 06:52
标题: 回复: 八年级数学下册拓展资源
八年级下册拓展资源——勾股定理的应用


勾股定理是一条古老而又应用十分广泛的定理。


1)在代数研究上取得的成就


例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率


据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。


公元1世纪,我国数学著作《九章算术》中记载了一种求整勾股数组的法则:任意给定两个正整数mn(mn),那么(m2-n2)mn(m2+n2)这三个正整数就是一个整勾股数组。用代数方法很容易证明这一结论。公元3世纪,我国著名数学家刘徽从几何上也证明了这一结论。


不难证明,如果上述mn(mn),是互质的奇数,那么用《九章算术》中的法则可以求出所有两两互质的整勾股数组。这也是我们中国古代数学家的一项杰出成就。


有趣的是:除了三元二次方程x2 + y2 =z2(其中xyz都是未知数)有正整数解以外,其他的三元n次方程xn + yn =znn为已知正整数,且n2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。


太阳距离我们有多远呢?这对于近代人来说,是一个常识性的问题;但对古代人而言,它却是个谜。为了解开这个谜,古代科学家进行了一次又一次探测。


据公元前一世纪成书的《周髀算经》记载,我国古代杰出的数学家陈子(公元前6-7世纪)对太阳的高和远进行了测量,这就是人们所乐于称道的陈子测日。他的测量方法原理如图所示。





其中,S表示太阳,I表示日下点,ACDF均表示髀,即测量用的标杆。CFI在同一直线上。b是髀竖立在F处的影长,A+b是髀竖立在C处的影长。髀长h是已知的,Abd均可实际量出。





△SHD∽△ACG, △SDA∽△AGB,有





于是,便可求出太阳S到日下点I的距离,即日高SI;并且,还可求出髀DF到太阳日下点I的距离FI


但是,由于陈子受当时科学水平的限制,误把椭球形的地球当作平面。所以,求出的日高与实际距离相差很远。然而,他的测日法所反映的数学及测量水平却是在世界上遥遥领先的,而且他的测量方法(后来叫做重差术)至今仍被使用着。所以,人们称陈子为测量学之祖,毫不为过。

 
求得了日高及髀到日下点的距离之后,髀到太阳的距离即日远,陈子是怎样计算的呢?据《周髀算经》记载,有一次荣方和陈子问答,陈子说:若求邪至日者,以日下为勾,日高为股,勾股各自乘,并开方而除之,得邪至日者。(古汉语也作解)就是说,将勾、股各平方后相加,再开方,就得到弦长(图2)。陈子的这段话,不仅解决了日远的计算问题,而且还最早表述了勾股定理。这充分证明,我国至迟在陈子所处年代,已经发现并运用了勾股定理。


由此可见,你是否想到过,我们的祖先发现勾股定理,不是一蹴而就,而是经历了漫长的岁月,走过了一个由特殊到一般的过程。


2)宇宙探索


几十年前,有些科学家从天文望远镜中看到火星上有些地区的颜色有些季节性的变化,又看到火星上有运河模样的线条,于是就猜想火星上有高度智慧的生物存在。当时还没有宇宙飞船,怎样和这些智慧生物取得联系呢?有人就想到,中国、希腊、埃及处在地球的不同地区,但是他们都很早并且独立的发现了勾股定理。科学家们由此推想,如果火星上有具有智慧的生物的话,他们也许最早知道勾股定理。火星是否有高度智慧生物?现在已被基本否定,可是人类并没有打消与地球以外生物取得联系的努力,怎样跟他们联系呢?用文字和语言他们都不一定能懂。因此,我国已故著名数学家华罗庚曾建议:让宇宙飞船带着几个数学图形飞到宇宙空间,其中一个就是边长为345的直角三角形。两千年前发现的勾股定理,现在在探索宇宙奥秘的过程中仍然可以发挥作用。


看来,勾股定理不仅仅是数学问题,不仅仅是反映直角三角形三边关系,她已成为人类文明的象征,她已成为人类智慧的标志!她是人们文化素养中不可或缺的一部分,不懂勾股定理你就不是现代文明人!



作者: 今夕何夕    时间: 2008-6-28 06:53
标题: 回复:八年级数学下册拓展资源
八年级下册拓展资源——对勾股定理进行证明  







在中国,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。最早的形式见于公元3世纪吴国人赵爽(字君卿)所著《勾股圆方图注》。在这篇短文中,赵爽用割补法画了一张所谓的“弦图”,其中每一个直角三角形称为“朱实”,中间的一个小正方形叫“中黄实”,以弦为边的正方形ABEF叫“弦实”。由于四个朱实加上一个中黄实就等于弦实.这个证法通过图形的分割、移补,精辟地总结了我国东汉以前在勾股定理方面的光辉成就。



赵爽的证法与印度数学家婆斯伽罗在公元1150年的证法相似,婆氏也曾作出类似的图形。



世界上对勾股定理的证明方法很多,1940年有人出了一本勾股定理证明专集,其中收集了365种证法,当然,证法还不止这些。



勾股定理以其简单、优美的形式,丰富、深刻的内容,充分反映了自然界的和谐关系。人们就这样对勾股定理一直保持着极高的热情。


作者: 今夕何夕    时间: 2008-6-28 06:53
标题: 回复: 八年级数学下册拓展资源
八年级下册拓展资源——勾股定理的由来


为纪念二千五百年前一个学派和宗教团体——毕达哥拉斯学派成立以及它在文化上的贡献,1955年,希腊发行了一张邮票,图案由三个棋盘排列而成。这个图案是对数学上一个非常重要定理的说明。在我国,人们称它为勾股定理或商高定理;在欧洲,人们称它为毕达哥拉斯定理。为什么一个定理有这么多名称呢?





商高是公元前十一世纪的中国人。当时中国的朝代是西周,处于奴隶社会时期。在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。周公问商高:天不可阶而升,地不可将尽寸而度。天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:故折矩以为勾广三,股修四,经隅五。即我们常说的勾三股四弦五。什么是勾、股呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为,下半部分称为。商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成勾三股四弦五。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做商高定理


关于勾股定理的发现,《周髀算经》上说:故禹之所以治天下者,此数之所由生也。”“此数指的是勾三股四弦五,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。


欧洲人则称这个定理为毕达哥拉斯定理。毕达哥拉斯(PythAgorAs)是古希腊数学家,他是公元前五世纪的人。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为毕达哥拉斯定理。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:百牛定理所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。


尽管希腊人称勾股定理为毕达哥拉斯定理或百牛定理,法国、比利时人又称这个定理为驴桥定理,但据推算,他们发现勾股定理的时间都比我国晚。我国是世界上最早发现勾股定理这一几何宝藏的国家!



作者: 今夕何夕    时间: 2008-6-28 06:53
标题: 回复: 八年级数学下册拓展资源
在工业世界的速度、精确和计算工具

王利公
人们利用风来推动帆船已有几千年的历史,利用风和水的急流转动磨盘和水车也好几百年了。但是一直到十七世纪,世界上大部分的劳动还都要靠人力来做。


随着生产规模的扩大,各种事业的发达,人力已经远远不能满足日益增长的需要。比如开掘更深的矿井时,用人力抽水机就很难对付井下大量的地下水。于是寻找新的动力来源就成了当时急需解决的大问题。


十七世纪末叶,法国的帕潘和英国的萨瓦里都做成了水力推动的抽水机。过了几年,纽考曼做成了第一架蒸汽动力活塞发动机。五十年后,瓦特改良了蒸汽机的装置,并且发明了曲柄连杆,这样就使得蒸汽机能够带动轮子转动。


瓦特通过实验发现,一匹强壮的马在一分钟里能把150磅的重物升高220英尺。如果一架发动机同样能在一分钟里做到同样的事情,那它的工作能力——功率,就是一马力。


看来好像很奇怪,蒸汽动力的使用使得马在工业上的作用日益减少,为什么动力计量单位还要用“马力”呢?其实,这和蜡烛被代替以后,亮度的计量单位仍用“烛光”是一样的道理。把新的量建立在原有量的基础上,大家很容易理解和接受。


现在,我们使用的许多计量单位是一种精密确切的计量语言,是瓦特时代的工程师和科学家所难以理解的了。比如力学中的“达因”和“牛顿”,热学中的“卡”和“大卡”,电学中的“伏特”和“安培”等,它们更为适应动力时代的需要。


在瓦特之后的一百年里,蒸汽动力迅速改变了西方世界的生产状况和生活面貌。在煤田附近,由于有丰富廉价的蒸汽机燃料,大工业城市急剧兴起,工业从乡村的茅棚转移到了城市的工厂;浓烟滚滚的烟囱代替了远洋船道上的片片白帆;大马车哒哒的马蹄声渐渐绝迹,取而代之的是蒸汽机车奔驰在铁道上的轰隆声。


机器的使用,开创了大规模生产的新时代。随之而来的,是对组织和管理这种生产也提出了许多新的问题。在小型生产的手工作坊里,人们只要掌握收入和支出、赢利和亏损就行了;而对大型的机器工场,那就必须进行计划生产,必须了解产品的需要是否随季节变化,产品在什么地方能畅销,如何能改进产品的质量和销路等等,急待解决的问题是很多的。


有助于说明这些问题的情报,经常是用简单直观的图表给出的。比如,可以用直条图来记录供电所每天的供电情况。图上每根长条的高度分别表示各个小时的供电数量;进行贸易的商人,可以做一个圆形图表,用整个圆的面积表示他所有的商品,而以各个扇形的面积分别表示要在各个地方销售的部分。


和数学关系特别密切的统计学,它的进步只是动力时代的一个特点。这个时代更重要的特点是设计方面的进步。我们把五、六十年前的汽车和飞机拿来和今天的相比,无论是外形还是内部结构,都能看出变化之大!华丽的流线型、轻巧的内燃机和喷气发动机使得现代的汽车和飞机能以最小的能量损失,平稳而又高速地运行。不管你喜欢还是不喜欢,它们的外形是由本身的原因决定的,它们的确有更大的效率。设计的变革是工程技术人员辛勤研究和计算的结果,而工程技术人员的研究和计算,又必须依赖数学。


随着科学技术的发展,从实际生产中提出的各种数学问题也跟着变得更为复杂了。近代许多计量问题要求的精度高、计算量大,而且速度要快。正是在这种形势下,计量工具得到了迅速的发展。


1621年,奥持列德发明了计算尺。用经过改进的计算尺,人们能足够准确地、在几秒钟内算出任何圆面积、求出任意数的平方或平方根;利用千分尺,人们能以千分之一厘米的精密度测量薄金属片的厚度;利用半圆规,人们可以方便准确地做出各种角度;欧几里得圆规直尺几何学范围外的曲线,人们借助云形规能画出它们的轮廓来。


新的动力把人从大量繁重的体力劳动中解放了出来;新的数学工具把人从大量的单调计算中解放了出来。过去,复制一张扩大三倍的平面图纸时,首先必须仔细地量取原图每根线的长度,然后扩大三倍,再小心地画出;今天,只要简单地调整一下放大尺就行了。


牛顿时代,已经设计出了把乘除变为加减运算的对数表;在动力时代,我们有了能在转瞬间解决复杂问题的电子计算机。


要是因为掌握了先进的计算工具,就觉得我们比过去的人们更高明,那就错了。事实上,我们今天所有的进步都是在前人的成绩基础上取得的。如果过去没有人算出精确的π值,我们怎么能用计算尺来求圆面积呢?如果没有人把圆分成了度数,我们又怎么能用半圆规来做角度呢?就是现代计算工具的尖端——电子计算机,情况也是这样的。如果没有我们祖先以十为基数的十进制,我们又怎么能有以二为基数的二进制呢?


动力时代的数学,为现代自然科学和社会科学的发展提供了新的重要工具。十九世纪,高斯等建立了一种全新的几何——非欧几何。


我们在学习欧几里得几何学时,有这样一条公理:“在平面上,过直线外一点,只能作一条直线平行于原直线”。而高斯等却做出了另外一种假设,他们认为:在含有已知直线和直线外的已知点的平面中,过该点可引无数不与已知直线相交的直线。


在非欧几何学中,通过直线外的一点,可以引无数位于直线与点同一平面、并且不与已知直线相交的直线;任何三角形的内角之和,总是小于一百八十度,并且随边长而变化;在这种几何学中,也没有什么相似形。


欧几里得几何学在两千多年的时间里,一直是唯一的几何教科书。因此,非欧几何学的出现是几何学的大变革。在现代物理学和天文学中,它是许多新理论的基础!


二十世纪初,爱因斯坦创立了著名的相对论,为科学家深入研究原子内部和星辰运动作出了重要贡献。它与量子力学一起,成为近代物理学的基石。不用谈论它的详细内容,只要列出爱因斯坦方程之一,我们就可以看出相对论是怎样离不开数码和运算符号的。它的建立需要有数学工具才行,这个结论是有普遍意义的。近代对自然界各个领域的探索,没有数学是不可想象的,简直会寸步难行。


就是这样,人类在原始的生存斗争和后来的阶级斗争、生产斗争和科学实验中,逐渐认识了数学、发展了数学。正如恩格斯指出的:“数学是从人的需要中产生的”。反过来,数学又成为人类揭示各种宇宙奥秘和研究各种社会问题的有力工具。和原始的弹指计数相比,后来的数学成果确实是惊人的。


  随着人类社会的向前发展,数学会越来越进步。可以预料,更巨大、更重要的数学成就,一定会在未来为时代中不断产生。



作者: 今夕何夕    时间: 2008-6-28 06:54
标题: 回复:八年级数学下册拓展资源
古欧洲人在远航、引力和图像方面的成就  



王利公



十六世纪的欧洲,工商贸易迅速发展,促进了航海事业的大发展。



远洋航行的船只随时需要确定自己在茫茫大海中的位置,所以准确的时钟就成了必不可少的重要工具。船只在海上的位置是由所在的纬度和经度来表示的。自古以来,许多科学家根据日月星辰的情况,制作了许多观像仪,可以用来确定任何一点所在的纬度。要想定出船只所在的经度,最好的办法是用所在地的时间和家乡港口的时间作比较。



为什么这样可以确定经度呢?我们知道,地球一天二十四小时由西往东转动一周是360°,就是一小时转动15°,一分钟转动0.25°。这样,要是知道了船只所在地的时间比家乡港口早了一小时四分,那船只就在家乡港口东16°的经线上。



曾经有人用古观象仪得到过非常近似的当地时间。但是要确定另一地点的时间,用两地的时间差来求出两地的经度差,却几乎是毫无办法。



从哥伦布发现新大陆到麦哲伦绕地球以后的很长时期里,因为没有准确的时钟,所有的航海家都面临确定经度这个生死攸关的大事。一旦经度和航向有了偏差,就可能引起人员的大量死亡和船只的沉没。



古代使用过日规、滴漏、烛时计,以后是教堂里用的重力钟等。这些计时工具显然已经过时了,人们要求的是能精确测量分和秒的计时工具。



1583年,意大利科学家伽利略第一个发现了精确测量微小时间的线索。在比萨大教堂做弥撒的人群中,伽利略细心地观察来回摇摆的灯,他以脉搏的跳动计算摆动的时间,发现每一次摆动都用同样的时间。



后来,伽利略用一个自制的滴水钟来检验这个观测的准确性。摆在摆动时,他让水通过一个大水桶底部的小孔,流到下面的小杯内。如果两次摆动流出的水的重量一样,那两次摆动用的时间就是一样的。检验的结果是肯定的。



实验还表明,摆动的时间只和摆的长度有关系。要想使摆动时间加倍,必须让摆长扩大为四倍;要想使摆动时间加为三倍,摆长必须扩大为九倍,即摆长与摆动时间的平方成正比。现在我们知道这个规律对于小角度的摆动才成立,当摆动弧度过大时就不大准确了。1657年,荷兰科学家惠更斯利用伽利略的发现,首先制出了精确的摆钟。



到了十八世纪中期,当航船配备了六分仪和经线仪之后,确定经度的问题才完全得到解决。六分仪可以精确地提供当地时间;经线仪能时刻给出家乡时间。最初的经线仪就是一个能在远洋航行中保持精确时间的钟,它是一个自学的英国木匠哈里森发明的。



一个世纪以后,世界各国一致同意以格林威治时间为标准,定时计表,并且把通过伦敦格林威洽天文台的经线作为划分经度的起点,从此人们又有了统一的时间和经度了。



十六世纪以前,人们一直认为物体降落的快慢是和物体的重量有关的。在伽利略以前,学校的教师总是这样对学生讲:物体降落的速度是跟它的重量成正比的。伽利略的摆动实验否定了这个看法,他发现,摆底部的摆锤重量对于摆动周期没有影响。



为了无可争辩地解决这个问题,伽利略在比萨斜塔上当众做了著名的落体实验。他从斜塔上同时落下几个不同重量的金属球和一个象牙球,观众亲眼看到它们一齐下落,同时到达了地面!



伽利略还发现,重物下落时,速度是在不断增加的,或者说在加速。但是,由于他那个时候还没有按秒计时的停表,所以直接测量加速度是有困难的。



伽利略意识到,球体在斜面向下滚和在空中下落一样,都是重力作用的结果,只不过斜面减慢了球体的速度罢了。于是,他让一个光滑的、完全标准的青铜小球,顺着一条充分光滑的斜槽滚下来,研究小球的运动。尽管斜槽中的斜面减缓了小球的速度,但是重力对它的作用相对下落重物的作用是完全一样的。他发现,小球在两秒钟里滚过的距离为第一秒钟里滚过的四倍;在三秒钟里滚过的距离为第一秒钟里滚过的九倍。啊!滚动距离与滚动时间的平方成正比,伽利略找到了匀加速运动的规律!



根据这个发现,就可以算出炮弹在空中飞行的弹道了。炮弹离开炮口时,如果没有重力以匀加速度向下拉它的话,就会沿着炮筒的方向直线前进。正是由于重力的吸引,它经过的才是一条曲线,叫做抛物线。



伽利略以前的数学家,曾试图帮助炮兵根据目标的距离来确定炮的仰角,一直没有成功。搞清楚重力对炮弹飞行的作用后,就可以根据目标的距离来决定炮身的仰角了。因为目标的距离和炮弹的速度决定了炮弹的飞行时间,也决定了重力作用于炮弹的时间。



十七世纪的军事工程师依据伽利略的研究,设计出了防御炮击的新式堡垒。它不再修在山头上,而是建在低凹的地方,并且用地面的泥土工事作掩护。这种堡垒好防守,又同样能有效地打击敌人。



早在十六世纪的时候,海员们就开始在标有经纬线的地图上记录航船每天的位置;联接所有这些位置点的线,就是船的航线。数学家曾不只一次地试图以同样的方法在坐标图上描绘动点的轨迹,可惜都没有取得令人满意的结果。



法国数学家笛卡儿最早认识到轨迹的重要意义。他是第一个建立平面坐标,引入变数,开创解析几何的人。他也是最早使用现代字母和符号来书写方程的数学家之一。



根据笛卡儿的思想和方法,我们就好用图像的方法来解决阿溪里斯和乌龟赛跑的问题了:如果以竖轴表示时间,横轴表示距离,分别以两个动点表示阿溪里斯和乌龟,那就可以简单明白地表示出它们赛跑的情况来。



两个动点的轨迹是两条直线。两条直线交点的横坐标,就是阿溪里斯追上乌龟的距离,纵坐标就是追上乌龟的时间。



人们从很早以前就开始了对天体的研究。希腊的托勒密认为,地球是宇宙的中心,太阳、月亮和行星、恒星都围绕地球运动。当时的天文学家,除了阿斯塔恰斯和费劳鲁斯等极少数的几个人外,都承认这种地球中心说。



托勒密的学说非常符合基督教对宇宙结构的解释,它受到教会的竭力宣扬和扶持。因此,在中世纪的欧洲保持了长时期的统治地位。后来,波兰科学家哥白尼指出:地球和其它行星,都是围绕太阳运动!到了十七世纪,哥白尼的理论被更多的人,包括丹麦天文学家第谷、德国天文学家开普勒和伽利略所接受。



开普勒在第谷详细观察的基础上,经过长期的分析研究,指出行星围绕太阳的运动轨道不是精确的圆,而是椭圆,太阳是在这些椭圆的一个焦点上。



开普勒发现了行星绕太阳运动的椭圆轨道,却不知道行星这样运动的原因。伽利略知道用重力解释炮弹飞行的弹道,却没有认识到重力可以解释行星的轨道。



抽气机的发明推动了科学研究的发展。通过真空里的落体试验,人们得到了引力的更精确的数据。笛卡儿指出:任何运动的物体,如果不受到外力使它停止或者改变方向,它会永远沿直线运动。



这也就是说,关于行星运动的问题,需要解释的不是为什么它们能保持运动,而是运动的轨道为什么是闭合曲线,而不是直线。牛顿总结了许多世纪以来的观察、推理和分析,终于给出了万有引力定律。



牛顿指出:任何两个物质质点都是相互吸引的,引力的大小,跟两个质点的质量乘积成正比,跟它们的距离平方成反比。这就是说,整个宇宙中的吸引力,都遵守和在地球上一样的规律。太阳把行星拉向它的中心,就象地球把重物拉向它的中心一样。如果没有这种引力时,行星也会象重力消失时的炮弹一样沿直线运动。正是太阳的引力,使它离开了直线轨道。牛顿论证了行星的速度和太阳的吸引如何一起使行星保持在它们运动的闭行曲线上。



  生产和技术的发展推动着力学和天文学的前进,也推动着数学的前进。那时候,欧洲普遍建立了科学院,空前丰富的名种科学成果,在那里得以汇集交流。正是在这样的基础上,十七世纪后半叶,莱布尼茨在德国、牛顿在英国,几乎同时建立了微积分。这一理论的产生,是数学史上具有重大意义的创造。它对近代自然科学的进步,产生了革命化的影响。


作者: 今夕何夕    时间: 2008-6-28 06:54
标题: 回复:八年级数学下册拓展资源

古印度人和阿拉伯人在数字、零和代数方面的成就  



王利公



印度在亚洲的南部。春天到来的时候,北边喜马拉雅山上的积雪开始融化,聚集成五条急流,汇总流入印度河。很早以前,在富饶的印度河谷地就出现了上古的居民达罗毗托人,世界最古老的文化之一就发源在这里。



在一些方面,达罗毗托人的文化比埃及和苏马连文化高。他们有自己的独特的文字,有十进制的算法。大约公元前两千年的时候,印度人就已经使用51个字母组成的文字,数学在印度曾被认为最重要的科学之一。和许多古老的民族一样,它的头一批数学家也是僧侣。



直到两千年前,印度人还使用由横划组成的数字。后来,他们开始用干棕榈叶做写字的材料,并且发展了草体书法,于是由一到九的各不相同的数字符号就这样日趋成形了。古印度人也用美索不达米亚商人的算盘来进行计算,每个数字符号都能很方便地表示算盘上任何一行的石子数。



印度人新的数字符号要是到此为止不再发展,那意思就不大了。事实上,ZZ只能表示在任意两行沟里的两个石子,它可以是22,也可以是202、2020等等。这就是说,人们不仅要知道沟里有几个石子,还要知道它们各在那一行里。



不知什么时候什么人,在前人智慧和成就的基础上,总结出了这样一个办法:用最右面的数字表示个位行里的石子数,左面相邻的数字表示十位行里的石子数。其它则以此类推,用点表示空行。这样,ZZ就只表示22,Z.Z.就只表示2020,而没有其它的意思了。表示空位的“.”,后来改用“0”代替。



有了这个记数法,人们就可以用同一个符号记录算盘上任何一行上的同一个数字,简单清楚,书写方便。印度记数法的最大优点是能用数字来进行计算,这是一个了不起的进步!



我们知道,古老的书写系统,包括埃及的、巴比伦的、希腊的、罗马的都是用不同的符号来表示算盘上不同行里的相同的石子数,不像我们今天可以用同一个“1”,在不同的数位上表示一、十和一百。因此每一位行都得用不同的加法表相乘法表,用它们做笔算或心算是很麻烦的。如果只有九个不同的符号,其中每一个都可以表示任何一行的石子数,零表示空行,那每一行上的计算就都是一样的了。这样,人们只要掌握一个表就行了,好懂、好背、好用。



我国古代计算是用算筹。算筹为了避免相邻两位数码混淆,采用了纵横相间的办法,而是每一行的加法表和乘法表,一直都是一样的。



印度人创造的这套数码1、2、3、4、5、6、7、8、9、0,是对数学知识的非常宝贵的贡献!它很快就引起了计算艺术的革命。



印度数学家还研究了分数,并且能象我们今天这样书写它们。到公元五百年,伏拉罕密希拉能通过计算,预告行星的位置;阿耶波多论述了确定平方根的法则,给出了圆周率的近似值为3.1416。



公元七世纪初期,伊斯兰教的创始人穆罕默德统一了整个阿拉伯地区。他死后的三百多年间,他的门徒带着这种新教,往西经过整个北非,进入西班牙和葡萄牙;往东越过印度河进入了亚洲的广大地区。



大约在762年,穆斯林们建立了帝国首都巴格达城。四十年后,它成为世界著名的学术中心,就象希腊和罗马时期的亚历山大城一样。



在公元八百年到九百年这一个世纪里,东西方的知识在巴格达得到了交流。东方来的商人和数学家带来了新的数字符号,印度算术和中国的算学成就;从西方选出来的异教徒带来了亚历山大强盛时期的科学著作,其中包括天文学和地理学的论文,还有欧几里得几何学。穆斯林学者把这些著作译成了阿拉伯文。



穆斯林的天文学家发展的制图学,远远超过了亚历山大时期的水平。在巴格达的学校里,三角学盛行起来。由于掌握了印度的新算术,穆斯林数学家能更为完满地研究和应用欧几里得和阿基米得的几何学成就。航海家装备和改进了航海设备;地理学家也有了新的更好的大地测量工具。穆斯林世界的科学技术,取得了很高的成就。



公元一千年,古罗马帝国的大部分地区被置于穆斯林的统治之下。在西班牙的穆斯林大学里,学生们可以学习希腊几何学、印度算术、天文学、三角学和地理学,而这些科学,巴格达学者都作了很大的改进。



从十二世纪开始,穆斯林世界的科学知识逐渐传到欧洲各地。到了公元一千四百年,意大利、法国、德国和英国的商人们开始使用新数字,教授新算术的学校开始在整个欧洲兴起。半个世纪后,渐渐有了印刷术。算术教科书和航海历是主要的印刷品。



新数字从一个地方传到另一个地方,常常一方面变形走样,一方面又保持着九个符号和一个零的样式。但是,如此先进的数字也并不是一开始就能在所有地方被接受的。十三世纪时,一项法令禁止佛罗论萨的银行业者使用新数字。一百年后,意大利的派丢厄大学还坚持书籍的价格表必须用罗马数字。直到十五世纪末,印度数字才在西欧的航海和商业中普遍使用。几个世纪后,虽然还有人坚持用算盘和计算板上的计算方法,但是越来越多的人热衷于学习新算术了。



在早期印刷出版的教科书中,不少列表和解决加减乘除问题的简便方法,现在虽然已经成为博物馆里的东西了,但是这些教科书把新的简写符号,比如“十、—”等引进算术中却是十分重要的,尽管这些符号最早很可能是表示包裹超重和缺重用的,不是数学上的有意的发明。由于这些符号显示了作用,随后,另一些符号“×、÷、∴、=”,也逐渐被引了进来。



对于我们现在用代数求解的某些问题,印度和穆斯林的数学家也早就发现了解它们的妙法,“代数”一词就是阿拉伯语。但是穆斯林数学家那时讲授的代数和我们现在学的代数是不一样的。他们的代数式都是文字写的,唯一的简写的符号是表示平方根的符号。



代数学大约到十七世纪初才逐渐形成。下面我们来作一个简单的题目,看看代数学是怎样变化发展的:题目:一个数,乘以2,除以3,等于40,问这个数是多少? 印度和穆斯林的数学家是这样解的:因为这个数的三分之二是四十,它的三分之一就是四十的一半,即二十;又因为这个数是二十的三倍,得这个数是六十。引进一些数学符号以后,早期的算法是这样来求解的:(2×某数)/3=40,某数/3=1/2×40=20,某数=3×20=60。



我们现在的代数,以字母n代替了“某数”,并且省去了乘号“×”。解法如下: 2n/3=40,n/3=20,n=60。



公元一千二百年的穆斯林教师肯定能给出解这类问题的法则,但是语句势必冗长繁琐:如果你已经知道一个数,乘以第二个数,再除以第三个数,结果为已知的话,那么你就可以把这个结果乘以第三个数,再被第二个数来除,把原数求出来。



  现在,我们可以用n表示任意数,s表示第二数,t表示第三数,a表示得数,如果sn/t=a,那n=ta/s。写成这样的形式,法则就一目了然,清楚好记了。


作者: 今夕何夕    时间: 2008-6-28 06:54
标题: 回复:八年级数学下册拓展资源
古中国人在筹算、观天和算法方面的成就  



王利公



我国是世界上最早的文明国家之一。很早以前,我们的祖先在渔猎农事活动中就接触到了计算和测量,并在这方面积累了大量的知识。



万里长城和大运河是我国古代文明的伟大成就。战国时期战争连绵,燕、赵、秦三国为了抵御来自北方的侵扰,建筑了长城;秦始皇统一全国,把它们连接起来。后来,汉朝和明朝都大规模修筑过长城。长城由西至东,在险峻起伏的山岭上绵延数千公里,是世界上仅有的巨大土石建筑。沟通南北的大运河,长达一千七百多公里,朴实壮观,是非常杰出的水利工程。我国人民在长城和运河的建造过程中积累了大量的几何测量、数字计算和土木工程方面的知识。



我国古代的计算不是用记数文字直接进行,而是用算筹,很有特色。在开始的时候,人们是用一些小树枝来计数,一根小树枝代表一头牲畜、一堆谷物或者一件农具。后来,逐渐形成了一套计算方法,小树枝也慢慢变成了竹制、铁制、牙制的小棍,外形规格齐整,这就是算筹。



筹算可以进行整数和分数的加、减、乘、除、开方等各种运算。直到元、明以前,筹算一直是我国的主要计算方法。



筹算的记数法既是十进,又按位值分别表示不同单位,和现代记数法相似。著名的数学著作《九章算术》,大约编于公元四、五十年间的东汉初期。这部书是采用问题集的形式编的,共有二百四十六个问题,分成方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。



方田章讲的是各种分数计算和方田、梯形田、斜方形田、圆田、半圆形田、弧田、环形田等的面积计算;粟米章讲的是粮食交易的简单比例计算;衰分章讲的是一些按比例分配的问题;少广章讲的是由已知面积和体积,反求边的长短和面的宽广的问题,其中总结出了开平方和开立方的方法;商功章讲的是计算各种体积的方法,主要解决筑城、建堤、挖沟、修渠等实际工程问题;均输章讲的是粮食运输均匀负担的计算方法;盈不足章讲的是盈亏计算法和它的应用;方程章讲的是正负数算法,还有各种三元一次和四元一次联立方程的解法。勾股章叙述了勾方、股方的和等于弦方的勾股定理,以及相似直角三角形解法的问题。



《九章算术》的内容丰富多彩,包括了许多算术、几何、代数和三角的知识,是一部非常杰出的数学专著,它对我国数学的发展影响深远。



《九章算术》不只在中国数学史上占有十分重要的地位,而且影响远及国外。朝鲜和日本都曾经用它作为教科书。欧洲在中世纪的一些算法,比如分数和比例就很可能是从中国传入印度、再经阿拉伯传入欧洲的。在阿拉伯和欧洲的早期数学著作中,把“盈不足”称为“中国算法”就是一个证明。现在,《九章算术》已作为世界科学名著,被译成许多种文字出版。



《周牌算经》是我国另一部有名的天文学、数学著作,大约时在公元前一百年前后的西汉年间成书。书里明确给出了勾股定理的一般形式,即勾?+股?=弦?。



书中介绍了在两地利用标杆测出日影、再进一步利用勾股定理,算出太阳高度的方法,即书中还谈到了用一根直径一寸、长八只的中空竹管观测太阳,太阳的圆影正好与竹管的视线吻合,再进一步利用勾股定理推算出太阳的直径来。这说明我们的祖先至少在西汉年间,就能正确地应用直角三角形的勾股定理了。



等到三国时代,吴国人赵爽用几何方法对勾股定理进行了相当严格的论证。公元前五百年,春秋战国时代的学者已经有了相当丰富的数学知识。庄子《天下篇》中有“一尺之捶,日取其半,万世不竭”的记载。意思是一根一只长的木棍,每天截掉一半,千年万载也截不完。直到今天,人们还常把“日取其半”作为了解“极限”思想的典型例子。



大约在四千五百到三千五百年前的这段时期里,我国发明了第一辆车子。另外,从我国出土的许多殷代以前的陶器上也能看到不少圆形图案。这说明很早以前,我们的祖先就认识圆了。



在《周辨算经》周公和商高的对话中,谈到“周三径一”,这是我国最初的圆周率,被称为古率。后来,圆周率数值的精确性不断得到提高。



我国最早用严密的数学方法来求算圆周率数值的是刘徽。他认为古率为3,是圆内接正六边形的周长对直径的比值,这比圆周长对直径的比值要小得多。



刘徽把圆内接正六边形各边所对的弧平分,做出圆内接正十二边形,利用勾股定理求出它的边长。同理,可以求出圆内接正二十四、四十八、九十六边形的边长。内接正多边形的边数越多,求出的圆周率数值也就越准确。这就是刘徽的“割圆术”。



  “割圆术”用折线逐步逼近曲线,用圆内接正多边形的面积逐步逼近圆面积,这种用有限来逼近无限的方法,不仅提供了比较精确的圆周率的数值,而且为后来计算圆周率的人们奠定了坚实可靠的理论基础。






欢迎光临 绿色圃中小学教育网 (http://lspjy.com/) Powered by Discuz! X3.2