绿色圃中小学教育网
标题:
初中数学《算术平方根》说课稿
[打印本页]
作者:
网站工作室
时间:
2022-9-20 08:49
标题:
初中数学《算术平方根》说课稿
尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《平方根》的第一课时内容:算术平方根。新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教版初中数学七年级下册第六章第一节内容《平方根》。算术平方根的概念和性质的教学是对无理数的认识,数域从有理数到实数范围扩充的一个前提,也是之后学习二次根式及其运算的一个基础,在整个代数学习中有举足轻重的作用。
二、说学情
接下来谈谈学生的实际情况。七年级的学生已经有着良好的学习习惯,上课时能积极的思考,主动、创造性的学习,而且各个方面都已经发展的比较完善,具备了一定的分析问题能力和解决问题的经验,对于教学相对比较顺畅。所以教学中,尽量将课堂交给学生。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
(二)过程与方法
经历算术平方根概念的形成过程和求完全平方数的算术平方根的过程,发展数感。
(三)情感、态度与价值观
锻炼克服困难的意志,建立学习数学的信心,提高学习热情。
四、说教学重难点
我认为一节好的数学课,从教学内容上一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。根据授课内容可以确定本节课的教学重点是:算术平方根的概念和求法。教学难点是:算术平方根的概念和求法。
五、说教法和学法
数学教学要让学生亲身经历数学知识的形成过程,学生通过教学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我始终以学生为本,以学生为立足点,借助多媒体,引导学生观察、探究,充分调动学生学习的积极性,并创设情境,给学生机会去自主探究,把课堂还给学生。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节,我将采用创设情境的导入方法。讲述教材中给到的问题:美术比赛需要剪裁画布的情境,并请学生帮助小鸥同学解决画布边长的问题。由于学生之前已经掌握了乘法口诀表以内的完全平方数,根据正方形的面积和边长之间的关系,学生可以解决这个问题。由此我会继续提问:为什么是这样呢?引发学生思考从而导入课题。
设计意图:通过创设情境的导入方式,将生活中的问题放到数学课堂上来,激发学生的学习兴趣,请学生帮助解决问题可以有效建立学生学习的信心,最后通过提问引发学生思考,有效引入课题。
(二)讲解新知
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组讨论法等。
首先我会提问:请说一说,你是怎样算出画布的边长等于5dm的呢?学生已经掌握了乘法口诀表内的完全平方数,而且也知道正方形面积和边长的关系,所以对于这个问题,学生可以解决,我预设学生会根据这两个知识点解释为何画布的边长等于5
接着为了多一些观察的数字,我会组织学生完成已知正方形面积求正方形边长的表格的填写。完成表格填写之后,我会引导学生观察表格中的数字特点,并提问:填写这个表格的过程是一个已知什么求什么的过程?并组织学生小组讨论,然后请小组派代表回答。通过讨论学生能够发现:边长和面积的关系实际上就是已知一个正数的平方,求这个正数的问题。然后基于此,我会进行总结,总结内容包括算术平方根的概念,被开方数的概念,以及算术平方根的写法和读法。
接着告诉学生0的算术平方根是0,并提出问题:负数有算数平方根吗?为什么?由此引发学生思考,这个问题比较简单,学生能够知道一个数的平方不可能是负数,所以负数没有算术平方根。
至此学生已经知道了算术平方根的概念。接着我会出一道例题,检验学习成果,也加强学生对算术平方根的理解与记忆。请学生求下列个数的算术平方根,分别是100、1、49/64、0.0001,并请学生说一说过程。通过求解完全平方数的算术平方根,我会引导学生观察上述计算过程和结果,并通过问题“被开方数的大小与对应的算术平方根的大小之间有什么关系呢?”引导学生去思考,然后师生共同总结:对所有正数,被开方数越大,对应的算术平方根也越大。
至此,本节课要讲的新知内容已经在师生共同配合下学习完毕。
在新知过程中,我通过让学生观察多组完全平方数及其算术平方根,引导学生共同得出算术平方根的概念及其相关知识,让学生经历了知识的形成过程,而且在观察的过程中组织学生小组讨论,说一说他们观察到的特点,锻炼了学生的观察能力、合作交流能力以及语言表达能力,体现了以学生为主体的教学理念。
(三)课堂练习
接下来是巩固提高环节。我设置了几道判断题,请学生判断对错。包括:5是25的算术平方根;-6是36的算术平方根;0的算术平方根是0;0.01是0.1的算术平方根;-3是-9的算术平方根等。通过这样的问题的设置,让学生对算术平方根的知识进一步巩固,为后面开平方奠定基础。
(四)小结作业
最后是小结作业环节,我会提问学生今天有什么收获?
课后作业是教科书6.1习题第1、2题。
这样的总结方式不仅能够提高学生的总结概括能力,还能够便于我进一步掌握学生本节课的学习情况。
七、说板书设计
我的板书设计遵循简洁明了的原则,突出了本节课的重点部分,以下是我的板书设计:
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2