绿色圃中小学教育网
标题:
北师大版八年级上册数学 第六章优秀考试卷有答案
[打印本页]
作者:
桂馥兰香
时间:
2020-8-24 22:18
标题:
北师大版八年级上册数学 第六章优秀考试卷有答案
这套新北师大版八年级数学上册课时练同步练习单元测试期中期末考试题免费下载为
绿^色圃~中小学教育网
整理,所有内容与教育部审定新编教材同步,本站试卷供大家
免费使用下载
打印。
因为试卷复制时一些内容如图片之类无法显示,需要下载的老师、家长可以到帖子下面(往下拉)
二楼
下载WORD编辑的DOC附件使用!
第六章卷(1)
一、选择题
1.若3,2,x,5的平均数是4,那么x等于( )
A.8 B.6 C.4 D.2
2.一组数据4,3,6,9,6,5的中位数和众数分别是( )
A.5和5.5 B.5.5和6 C.5和6 D.6和6
3. 数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是( )
A.2 B.1 C.1.5 D.﹣2
4. 某中学足球队的18名队员的年龄情况如下表:
年龄(单位:岁) 14 15 16 17 18
人数 3 6 4 4 1
则这些队员年龄的众数和中位数分别是( )
A.15,15 B.15,15.5 C.15,16 D.16,15
5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.中位数 B.众数 C.平均数 D.极差
6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )
A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号
7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33 25 28 26 25 31
如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )
A.900个 B.1080个 C.1260个 D.1800个
8.如果一组数据a1,a2,…,an的方差是2,那么一组新数据2a1,2a2,…,2an的方差是( )
A.2 B.4 C.8 D.16
9.已知样本甲的平均数=60,方差=0.05,样本乙的平均数=60,方差=0.1,那么这两组数据的波动情况为( )
A.甲、乙两样本波动一样大 B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大 D.无法比较两样本波动的大小
二、填空题
10.若一组数据的方差为16,那么这组数据的标准差为 .
11.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据: .
12.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了 (个).
13.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,则关于x,y的方程组的解是: .
14.某中学为了了解全校的耗电情况抽查了10中全校每天的耗电量,数据如下表:
度数 90 93 102 113 114 120
天数 1 1 2 3 1 2
则表中数据的中位数是 度;众数是 度.
15.对甲、乙两个小麦品种各100株小麦的株高x(单位:m)进行测量,算出平均数和方差为:=0.95,s甲2=1.01,=0.95,s乙2=1.35,于是可估计株高较整齐的小麦品种是 .
16.某次射击训练中,一小组的成绩如下表所示.若该小组的平均成绩为7.7环,则成绩为8环的人数是 .
环数 6 7 8 9
人数 1 3 2
三、解答题
17.为积极响应骨架“节能减排”的号召,某小区开展节约用水活动,根据对该小区200户家庭用水情况统计分析,2010年6月份比5月份节约用水情况如表所示:
节水量/m3 1 1.5 2 2.5
户数 20 80 40 60
则6月份这200户家庭节水量的平均数是多少?
18.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:==83.25,小明的算法正确吗?为什么?若不正确,请写出正确的计算过程.
19.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:
节水量(米3) 1 1.5 2.5 3
户数 50 80 100 70
(1)300户居民5月份节水量的众数,中位数分别是多少米3?
(2)扇形统计图中2.5米3对应扇形的圆心角为 度;
(3)该小区300户居民5月份平均每户节约用水多少米3?
20.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?
21.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
利用图中提供的信息,解答下列问题.
(1)完成下表:
姓名 平均成绩 中位数 众数 方差
张明 80 80
李成 260
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是 ;
作者:
桂馥兰香
时间:
2020-8-24 22:18
北师大版八上第6章 测试卷(1).zip
(147.79 KB, 下载次数: 677)
2020-8-24 22:18 上传
点击文件名下载附件
获取解压密码请打开微信扫描下面图片关注公众号即可自动发送
如果已关注并遗忘密码,请扫码进入公众号,在底部输入“密码”会自动回复最新下载密码。
作者:
桂馥兰香
时间:
2020-8-24 22:18
答案
1.若3,2,x,5的平均数是4,那么x等于( )
A.8 B.6 C.4 D.2
【考点】算术平均数.
【专题】选择题.
【分析】只要运用求平均数公式:即可求出,为简单题.
【解答】解:∵数据3,2,x,5的平均数是4,
∴(3+2+x+5)÷4=4,
∴10+x=16,
∴x=6.
故选B.
【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
2.一组数据4,3,6,9,6,5的中位数和众数分别是( )
A.5和5.5 B.5.5和6 C.5和6 D.6和6
【考点】众数;中位数.
【专题】选择题.
【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.
【解答】解:在这一组数据中6是出现次数最多的,故众数是6;
将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是(5+6)÷2=5.5;
故选B.
【点评】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
3.数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是( )
A.2 B.1 C.1.5 D.﹣2
【考点】众数;中位数.
【专题】选择题.
【分析】根据中位数和众数的概念求解.
【解答】解:∵数据﹣3,﹣2,1,3,6,x的中位数是1,
∴x=1,
则该组数据的众数为1.
故选B.
【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4.某中学足球队的18名队员的年龄情况如下表:
年龄(单位:岁) 14 15 16 17 18
人数 3 6 4 4 1
则这些队员年龄的众数和中位数分别是( )
A.15,15 B.15,15.5 C.15,16 D.16,15
【考点】众数;中位数.
【专题】选择题.
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【解答】解:根据图表数据,同一年龄人数最多的是15岁,共6人,
所以众数是15,
18名队员中,按照年龄从大到小排列,
第9名队员的年龄是15岁,第10名队员的年龄是16岁,
所以,中位数是=15.5.
故选B.
【点评】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.
5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.中位数 B.众数 C.平均数 D.极差
【考点】平均数、中位数和众数的比较.
【专题】选择题.
【分析】由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.
【解答】解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,
所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.
故选A.
【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )
A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号
【考点】平均数、中位数和众数的比较.
【专题】选择题.
【分析】天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.
【解答】解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.
故选B.
【点评】本题考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.
7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33 25 28 26 25 31
如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )
A.900个 B.1080个 C.1260个 D.1800个
【考点】算术平均数;用样本估计总体.
【专题】选择题.
【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.
【解答】解:估计本周全班同学各家总共丢弃塑料袋的数量为×45=1260(个).
故选C.
【点评】生产中遇到的估算产量问题,通常采用样本估计总体的方法.
8.如果一组数据a1,a2,…,an的方差是2,那么一组新数据2a1,2a2,…,2an的方差是( )
A.2 B.4 C.8 D.16
【考点】方差.
【专题】选择题.
【分析】设一组数据a1,a2,…,an的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2an的平均数为′=2,方差是s′2,代入方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算即可.
【解答】解:设一组数据a1,a2,…,an的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2an的平均数为′=2,方差是s′2,
∵S2=[(a1﹣)2+(a2﹣)2+…+(an﹣)2],
∴S′2=[(2a1﹣2)2+(2a2﹣2)2+…+(2an﹣2)2]
=[4(a1﹣)2+4(a2﹣)2+…+4(an﹣)2]=4S2=4×2=8.
故选C.
【点评】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据a1,a2,…,an的方差是s2,那么另一组数据ka1,ka2,…,kan的方差是k2s2.
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2