绿色圃中小学教育网
标题:
北师大版初中数学九年级上册2.1 第2课时 一元二次方程的解及其估算优秀教案word下载
[打印本页]
作者:
水水水
时间:
2020-8-15 21:28
标题:
北师大版初中数学九年级上册2.1 第2课时 一元二次方程的解及其估算优秀教案word下载
此套
北师大版初中数学九年级上册优秀教案word下载
由
绿色圃中小学教育网整理,供大家免费使用下载,转载前请注明出处。
部分图片、表格、公式、特殊符号无法显示
,
需要下载的老师、家长们可以到
本帖子二楼
(往下拉)下载word压缩文件附件使用!
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!
第2课时 一元二次方程的解及其估算
1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点)
2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)
一、情景导入
在上一课时情境导入中,苗圃的宽满足方程x(x+2)=120,你能求出该方程的解吗?
二、合作探究
探究点一:一元二次方程的解
下列哪些数是方程x2-6x+8=0的根?
0,1,2,3,4,5,6,7,8,9,10.
解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x2-6x+8=0中,发现当x=2和x=4时,方程x2-6x+8=0成立,所以x=2,x=4是方程x2-6x+8=0的根.
解:2,4是方程x2-6x+8=0的根.
方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.
(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.
探究点二:估算一元二次方程的近似解
请求出一元二次方程x2-2x-1=0的正数根(精确到0.1).
解析:先列表取值,初步确定正数根x在哪两个整数之间,然后再用类似的方法逐步确定出x的近似正数根.
解:(1)列表,依次取x=0,1,2,3,…
x 0 1 2 3 …
x2-2x-1 -1 -2 -1 2 …
由上表可发现,当2<x<3时,-1<x2-2x-1<2;
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x 2.1 2.2 2.3 2.4 2.5 …
x2-2x-1 -0.79 -0.56 -0.31 -0.04 0.25 …
由上表可发现,当2.4<x<2.5时,-0.04<x2-2x-1<0.25;
(3)取x=2.45,则x2-2x-1≈0.1025.
∴2.4<x<2.45,∴x≈2.4.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.
(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.
三、板书设计
一元二次方程的解的估算,采用“夹逼法”:
(1)先根据实际问题确定其解的大致范围;
(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.
“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力
作者:
水水水
时间:
2020-8-15 21:33
下载
链接
2.1 第2课时 一元二次方程的解及其估算1.rar
(329.36 KB, 下载次数: 332)
2020-8-15 21:33 上传
点击文件名下载附件
打开微信,
扫描下方二维码
或
添加公众号“
czwkzy
”,
关注
初中微课资源
公众号, 免费获取
解压密码
。
如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
更多教学资源,免费、持续更新。
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2