绿色圃中小学教育网
标题:
北师大版初中数学八年级上册2.2 第1课时 算术平方根优秀教案word下载
[打印本页]
作者:
水水水
时间:
2020-7-29 18:06
标题:
北师大版初中数学八年级上册2.2 第1课时 算术平方根优秀教案word下载
此套
北师大版八年级数学上册(BS)同步练习Word下载
由
绿色圃中小学教育网整理,供大家免费使用下载,转载前请注明出处。
部分图片、表格、公式、特殊符号无法显示
,
需要下载的老师、家长们可以到
本帖子二楼
(往下拉)下载word压缩文件附件使用!
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!
文件预览:
2.2 平方根
第1课时 算术平方根
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.根据算术平方根的概念求出非负数的算术平方根;(重点)
3.了解算术平方根的性质.(难点)
一、情境导入
上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?
二、合作探究
探究点一:算术平方根的概念
【类型一】 求一个数的算术平方根
求下列各数的算术平方根:
(1)64;(2)214;(3)0.36;(4)412-402.
解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.
解:(1)∵82=64,∴64的算术平方根是8;
(2)∵(32)2=94=214,∴214的算术平方根是32;
(3)∵0.62=0.36,∴0.36的算术平方根是0.6;
(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.
方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.
(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
【类型二】 利用算术平方根的定义求值
3+a的算术平方根是5,求a的值.
解析:先根据算术平方根的定义,求出3+a的值,再求a.
解:因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22.
方法总结:已知一个数的算术平方根,可以根据平方运算来解题.
探究点二:算术平方根的性质
【类型一】 含算术平方根式子的运算
计算:49+9+16-225.
解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.
解:49+9+16-225=7+5-15=-3.
方法总结:解题时容易出现如9+16=9+16的错误.
【类型二】 算术平方根的非负性
已知x,y为有理数,且x-1+3(y-2)2=0,求x-y的值.
解析:算术平方根和完全平方式都具有非负性,即a≥0,a2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案.
解:由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.
方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.
三、板书设计
算术平方根概念:非负数a的算术平方根记作a性质:双重非负性a≥0,a≥0
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.
作者:
水水水
时间:
2020-7-29 18:13
下载
链接
2.2 第1课时 算术平方根1.rar
(330.08 KB, 下载次数: 573)
2020-7-29 18:13 上传
点击文件名下载附件
打开微信,
扫描下方二维码
或
添加公众号“
czwkzy
”,
关注
初中微课资源
公众号, 免费获取
解压密码
。
如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
更多教学资源,免费、持续更新。
欢迎光临 绿色圃中小学教育网 (http://lspjy.com/)
Powered by Discuz! X3.2